Relaxation Oscillations and Dynamical Properties in a Time Delay Slow–Fast Predator–Prey Model with a Piecewise Smooth Functional Response
Abstract
:1. Introduction
2. Entry–Exit Function
3. Dynamical Properties of the Time-Delay System
3.1. Equilibria
3.2. Hopf Bifurcation
3.3. Dynamics of Limit Systems
4. Relaxation Oscillation
- (a)
- Analysis of . Using the same proof as in Lemma 4, for each , we can define , with through the formula
- (b)
- Analysis of . System (7) is continuous at line . Consider two orbits and that start on . By Fenichel’s theory, and will be attracted to at the exponential rate . Based on Theorem 2.1 of [9], and pass by the generic fold point and then exponentially are contracted toward each other. After that, they fly to .
5. Numerical Simulation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, N. Limit cycles for a predator-prey model with functional response of Holling type I. Chin. Ann. Math 1988, 9, 421–427. [Google Scholar]
- Li, C.; Zhu, H. Canard cycles for predator-prey systems with Holling types of functional response. J. Differ. Equ. 2013, 254, 879–910. [Google Scholar] [CrossRef] [Green Version]
- Zegeling, A.; Kooij, R.E. Singular perturbations of the Holling I predator-prey system with a focus. J. Differ. Equ. 2020, 269, 5434–5462. [Google Scholar] [CrossRef]
- Li, S.M.; Wang, C.; Wu, K.L. Relaxation oscillations of a slow-fast predator-prey model with a piecewise smooth functional response. Appl. Math. Lett. 2021, 113, 106852. [Google Scholar] [CrossRef]
- Kuehn, C. Multiple Time Scale Dynamics; Applied Mathematical Sciences; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Hek, G. Geometric singular perturbation theory in biological practice. J. Math. Biol. 2010, 60, 347–386. [Google Scholar] [CrossRef] [Green Version]
- Jones, C.K.R.T. Geometric singular perturbation theory, in dynamical systems. Lect. Notes Math. 1995, 1609, 44–118. [Google Scholar]
- Liu, W. Exchange lemmas for singular perturbation problems with certain turning points. J. Differ. Equ. 2000, 167, 134–180. [Google Scholar] [CrossRef] [Green Version]
- Liu, W. Geometric singular perturbations for multiple turning points: Invariant manifolds and exchange lemmas. J. Dyn. Differ. Equ. 2006, 18, 667–691. [Google Scholar] [CrossRef]
- Krupa, M.; Szmolyan, P. Extending geometric singular perturbation theory to nonhyperbolic points-fold and canard points in two dimensions. Siam J. Math. Anal. 2001, 33, 286–314. [Google Scholar] [CrossRef] [Green Version]
- Krupa, M.; Szmolyan, P. Relaxation oscillation and canard explosion. J. Differ. Equ. 2001, 174, 312–368. [Google Scholar] [CrossRef] [Green Version]
- Krupa, M.; Wechselberger, M. Local analysis near a folded saddle-node singularity. J. Differ. Equ. 2010, 248, 2841–2888. [Google Scholar] [CrossRef]
- Arditi, R.; Ginzburg, L.R. How species interact: Altering the standard view on trophic ecology. Environ. Health Perspect. 2012, 114, 142–143. [Google Scholar]
- Schecter, S. Exchange lemmas. I. Deng’s lemma. J. Differ. Equ. 2008, 245, 392–410. [Google Scholar] [CrossRef] [Green Version]
- Schecter, S. Exchange lemmas. II. General exchange lemma. J. Differ. Equ. 2008, 245, 411–441. [Google Scholar] [CrossRef] [Green Version]
- Fenichel, N. Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 1979, 31, 53–98. [Google Scholar] [CrossRef] [Green Version]
- Prohens, R.; Teruel, A.E.; Vich, C. Slow-fast n-dimensional piecewise linear differential systems. J. Differ. Equ. 2016, 260, 1865–1892. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, X. Stability loss delay and smoothness of the return map in slow-fast systems. Siam J. Appl. Dyn. Syst. 2018, 17, 788–822. [Google Scholar] [CrossRef]
- Ai, S.; Sadhu, S. The entry-exit theorem and relaxation oscillations in slow-fast planar systems. J. Differ. Equ. 2020, 268, 7220–7249. [Google Scholar] [CrossRef]
- Wang, Y.F.; Qian, Y.H.; Lin, B.W. Relaxation Oscillations and Dynamical Properties in Two Time-Delay Slow-Fast Modified Leslie-Gower Models. Complexity 2020, 2020, 1351397. [Google Scholar] [CrossRef]
- Karl, H.M.N.; Peter, A.; Peter, D.D. Bifurcation of critical sets and relaxation oscillations in singular fast-slow systems. Nonlinearity 2020, 33, 2853–2904. [Google Scholar]
- Shen, J.H.; Hsu, C.H.; Yang, T.H. Fast–slow dynamics for intraguild predation models with evolutionary effects. J. Dyn. Differ. Equ. 2020, 32, 895–920. [Google Scholar] [CrossRef]
- Giné, J.; Valls, C. Nonlinear oscillations in the modified Leslie–Gower model. Nonlinear Anal. Real World Appl. 2020, 51, 103010. [Google Scholar] [CrossRef]
- Dehingia, K.; Sarmah, H.K.; Alharbi, Y.; Hosseini, K. Mathematical analysis of a cancer model with time-delay in tumor-immune interaction and stimulation processes. Adv. Differ. Equ. 2021, 2021, 473. [Google Scholar] [CrossRef] [PubMed]
- Hassard, B.D.; Kazarinoff, N.D.; Wan, Y.H. Theory of Hopf Bifurcation; Cambridge University Press: Cambridge, UK, 1981. [Google Scholar]
- Li, S.M.; Wang, X.L.; Li, X.L.; Wu, K. Relaxation oscillations for Leslie-type predator–prey model with Holling Type I response functional function. Appl. Math. Lett. 2021, 120, 107328. [Google Scholar] [CrossRef]
- Das, A.; Dehingia, K.; Sarmah, H.K.; Hosseini, K.; Sadri, K.; Salahshour, S. Analysis of a delay-induced mathematical model of cancer. Adv. Cont. Discr. Mod. 2022, 2022, 15. [Google Scholar] [CrossRef]
- Khan, A.Q.; Qureshi, S.M.; Alotaibi, A.M. Bifurcation analysis of a three species discrete-time predator-prey model. Alex. Eng. J. 2022, 61, 7853–7875. [Google Scholar] [CrossRef]
- Shang, Z.C.; Qiao, Y.H. Bifurcation analysis of a Leslie-type predator–prey system with simplified Holling type IV functional response and strong Allee effect on prey. Nonlinear Anal. Real World Appl. 2022, 64, 103453. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, Y.; Peng, Y.; Wang, Y.; Lin, B. Relaxation Oscillations and Dynamical Properties in a Time Delay Slow–Fast Predator–Prey Model with a Piecewise Smooth Functional Response. Mathematics 2022, 10, 1498. https://doi.org/10.3390/math10091498
Qian Y, Peng Y, Wang Y, Lin B. Relaxation Oscillations and Dynamical Properties in a Time Delay Slow–Fast Predator–Prey Model with a Piecewise Smooth Functional Response. Mathematics. 2022; 10(9):1498. https://doi.org/10.3390/math10091498
Chicago/Turabian StyleQian, Youhua, Yuhui Peng, Yufeng Wang, and Bingwen Lin. 2022. "Relaxation Oscillations and Dynamical Properties in a Time Delay Slow–Fast Predator–Prey Model with a Piecewise Smooth Functional Response" Mathematics 10, no. 9: 1498. https://doi.org/10.3390/math10091498
APA StyleQian, Y., Peng, Y., Wang, Y., & Lin, B. (2022). Relaxation Oscillations and Dynamical Properties in a Time Delay Slow–Fast Predator–Prey Model with a Piecewise Smooth Functional Response. Mathematics, 10(9), 1498. https://doi.org/10.3390/math10091498