On Geometric Mean and Cumulative Residual Entropy for Two Random Variables with Lindley Type Distribution
Abstract
:1. Introduction
2. Preliminaries Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vogel, R.M. The geometric mean? Commun. Stat.—Theory Methods 2022, 51, 82–94. [Google Scholar] [CrossRef]
- Feng, C.; Wang, H.; Tu, X.M. Geometric mean of nonnegative random variable. Commun. Stat.—Theory Methods 2013, 42, 2714–2717. [Google Scholar] [CrossRef]
- Abyani, M.; Asgarian, B.; Zarrin, M. Sample geometric mean versus sample median in closed form framework of seismic reliability evaluation: A case study comparison. Earthq. Eng. Eng. Vib. 2019, 18, 187–201. [Google Scholar] [CrossRef]
- Mahajan, S. Don’t demean the geometric mean. Am. J. Phys. 2019, 87, 75–77. [Google Scholar] [CrossRef]
- Martinez, M.N.; Bartholomew, M.J. What does it “mean”? A review of interpreting and calculating different types of means and standard deviations. Pharmaceutics 2017, 9, 14. [Google Scholar] [CrossRef] [Green Version]
- Selvadurai, P.A.; Selvadurai, A.P.S. On the effective permeability of a heterogenous porous medium: The role of the geometric mean. Philos. Mag. 2014, 94, 2318–2338. [Google Scholar] [CrossRef]
- Thelwall, M. The precision of the arithmetic mean, geometric mean and percentiles for citation data: An experimental simulation modelling approach. J. Inf. 2016, 10, 110–123. [Google Scholar] [CrossRef] [Green Version]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; pp. 243–259. [Google Scholar]
- Rao, M.; Chen, Y.; Vemuri, B.C.; Wang, F. Cumulative residual entropy: A new measure of information. IEEE Trans. Inf. Theory 2004, 50, 1220–1228. [Google Scholar] [CrossRef]
- Almarashi, A.M.; Algarni, A.; Hassan, A.S.; Zaky, A.N.; Elgarhy, M. Bayesian analysis of dynamic cumulative residual entropy for Lindley distribution. Entropy 2021, 23, 1256. [Google Scholar] [CrossRef]
- Asadi, M.; Zohrevand, Y. On the dynamic cumulative residual entropy. J. Stat. Plan. Inference 2007, 137, 1931–1941. [Google Scholar] [CrossRef]
- Toomaj, A.; Sunoj, S.M.; Navarro, J. Some properties of the cumulative residual entropy of coherent and mixed systems. J. Appl. Probab. 2017, 54, 379–393. [Google Scholar] [CrossRef]
- Xiong, H.; Shang, P.; Zhang, Y. Fractional cumulative residual entropy. Commun. Nonlinear Sci. Numer. Simul. 2019, 78. [Google Scholar] [CrossRef]
- Zardasht, V.; Parsi, S.; Mousazadeh, M. On empirical cumulative residual entropy and a goodness-of-fit test for exponentiality. Stat. Pap. 2015, 56, 677–688. [Google Scholar] [CrossRef] [Green Version]
- Lindley, D.V. Fiducial distributions and Bayes’ theorem. J. R. Stat. Soc. Ser. B 1958, 20, 102–107. [Google Scholar] [CrossRef]
- Ghitany, M.E.; Atieh, B.; Nadarajah, S. Lindley distribution and its application. Math. Comput. Simul. 2008, 78, 493–506. [Google Scholar] [CrossRef]
- Abd El-Bar, A.M.T.; da Silva, W.B.F.; Nascimento, A.D.C. An extended log-Lindley-G family: Properties and experiments in repairable data. Mathematics 2021, 9, 3108. [Google Scholar] [CrossRef]
- Abouammoh, A.; Kayid, M. A new flexible generalized Lindley model: Properties, estimation and applications. Symmetry 2020, 12, 1678. [Google Scholar] [CrossRef]
- Gómez-Déniz, E.; Sordo, M.A.; Calderín-Ojeda, E. The Log-Lindley distribution as an alternative to the beta regression model with applications in insurance. Insur. Math. Econ. 2014, 54, 49–57. [Google Scholar] [CrossRef]
- Korkmaz, M.Ç.; Yousof, H.M. The one-parameter odd Lindley exponential model: Mathematical properties and applications. Stochastics Qual. Control 2017, 32, 25–35. [Google Scholar] [CrossRef]
- Shanker, R.; Shukla, K.K.; Shanker, R.; Leonida, T.A. A three-parameter Lindley distribution. Am. J. Math. Stat. 2017, 7, 15–26. [Google Scholar] [CrossRef]
- Tharshan, R.; Wijekoon, P. A comparison study on a new five-parameter generalized Lindley distribution with its sub-models. Stat. Transit. New Ser. 2020, 21, 89–117. [Google Scholar] [CrossRef]
- Bakouch, H.S.; Jazi, M.A.; Nadarajah, S. A new discrete distribution. Statistics 2014, 48, 200–240. [Google Scholar] [CrossRef]
- Gómez-Déniz, E.; Calderín-Ojeda, E. The discrete Lindley distribution: Properties and applications. J. Stat. Comput. Simul. 2011, 81, 1405–1416. [Google Scholar] [CrossRef]
- Yilmaz, M.; Hameldarbandi, M.; Kemaloglu, S.A. Exponential-modified discrete Lindley distribution. SpringerPlus 2016, 5, 1660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thamer, M.K.; Zine, R. Comparison of five methods to estimate the parameters for the three-parameter Lindley distribution with application to life data. Comput. Math. Methods Med. 2021, 2021, 2689000. [Google Scholar] [CrossRef]
- Lagarias, J.C. Euler’s constant: Euler’s work and modern developments. Bull. Amer. Math. Soc. 2013, 50, 527–628. [Google Scholar] [CrossRef]
- Whittaker, E.T.; Watson, G.N. A Course of Modern Analysis, 4th ed.; Cambridge University Press: Cambridge, UK, 1996; pp. 235–264. [Google Scholar]
- Gautschi, W.; Cahill, W.F. Exponential integral and related functions. In Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables; Abramowitz, M., Stegun, I.A., Eds.; Dover Publications: New York, NY, USA, 1965; pp. 227–252. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giuclea, M.; Popescu, C.-C. On Geometric Mean and Cumulative Residual Entropy for Two Random Variables with Lindley Type Distribution. Mathematics 2022, 10, 1499. https://doi.org/10.3390/math10091499
Giuclea M, Popescu C-C. On Geometric Mean and Cumulative Residual Entropy for Two Random Variables with Lindley Type Distribution. Mathematics. 2022; 10(9):1499. https://doi.org/10.3390/math10091499
Chicago/Turabian StyleGiuclea, Marius, and Costin-Ciprian Popescu. 2022. "On Geometric Mean and Cumulative Residual Entropy for Two Random Variables with Lindley Type Distribution" Mathematics 10, no. 9: 1499. https://doi.org/10.3390/math10091499
APA StyleGiuclea, M., & Popescu, C. -C. (2022). On Geometric Mean and Cumulative Residual Entropy for Two Random Variables with Lindley Type Distribution. Mathematics, 10(9), 1499. https://doi.org/10.3390/math10091499