Studying the Harmonic Functions Associated with Quantum Calculus
Abstract
:1. Introduction
2. Preliminaries and Definitions
3. Sufficient Coefficient Condition
4. Extreme Points
5. Convolution and Convex Combinations
6. Distortion Bounds and Covering Theorem
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yousef, A.T.; Salleh, Z. On a Harmonic Univalent Subclass of Functions Involving a Generalized Linear Operator. Axioms 2020, 9, 32. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Arif, M.; Raza, M. Convolution properties of meromorphically harmonic functions defined by a generalized convolution q-derivative operator. AIMS Math 2021, 6, 5869–5885. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, N.; Khan, S.; Ahmad, Q.Z.; Khan, B. A Class of k-Symmetric Harmonic Functions Involving a Certain q-Derivative Operator. Mathematics 2021, 9, 1812. [Google Scholar] [CrossRef]
- Khan, M.F.; Al-Shbeil, I.; Aloraini, N.; Khan, N.; Khan, S. Applications of Symmetric Quantum Calculus to the Class of Harmonic Functions. Symmetry 2022, 14, 2188. [Google Scholar] [CrossRef]
- Dziok, J. Classes of harmonic functions associated with Ruscheweyh derivatives. Rev. Real Acad. Cienc. Exactas F-Sicas Nat. Ser. A Mat. 2019, 113, 13151329. [Google Scholar] [CrossRef]
- Bayram, H. q-Analogue of a New Subclass of Harmonic Univalent Functions Associated with Subordination. Symmetry 2022, 14, 708. [Google Scholar] [CrossRef]
- Frasin, B.; Alb Lupas, A. An Application of Poisson Distribution Series on Harmonic Classes of Analytic Functions. Symmetry 2023, 15, 590. [Google Scholar] [CrossRef]
- Alsoboh, A.; Darus, M. On Fekete–Szegö Problems for Certain Subclasses of Analytic Functions Defined by Differential Operator Involving q-Ruscheweyh Operator. J. Funct. Spaces 2020, 2020. [Google Scholar] [CrossRef]
- Al-Janaby, H.F.; Ghanim, F. A subclass of Noor-type harmonic p-valent functions based on hypergeometric functions. Kragujev. J. Math. 2021, 45, 499519. [Google Scholar] [CrossRef]
- Ismail, M.E.H.; Merkes, E.; Steyr, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77–84. [Google Scholar]
- Amourah, A.; Frasin, B.A.; Al-Hawary, T. Coefficient Estimates for a Subclass of Bi-univalent Functions Associated with Symmetric q-derivative Operator by Means of the Gegenbauer Polynomials. Kyungpook. Math. J. 2022, 62, 257–269. [Google Scholar]
- Ahuja, O.P.; Cetinkaya, A.C.; Polatoglu, Y. Bieberbach-de Branges and Fekete- Szego inequalities for certain families of q-convex and q-close-to-convex functions. J. Comput. Anal. Appl. 2019, 26.4, 639–649. [Google Scholar]
- Amourah, A.; Alsoboh, A.; Ogilat, O.; Gharib, G.M.; Saadeh, R.; Al Soudi, M. A Generalization of Gegenbauer Polynomials and Bi-Univalent Functions. Axioms 2023, 12, 128. [Google Scholar] [CrossRef]
- Alsoboh, A.; Amourah, A.; Darus, M.; Sharefeen, R.I.A. Applications of Neutrosophic q-Poisson distribution Series for Subclass of Analytic Functions and Bi-Univalent Functions. Mathematics 2023, 11, 868. [Google Scholar] [CrossRef]
- Alsoboh, A.; Darus, M. On subclasses of harmonic univalent functions defined by Jackson (p,q)-derivative. J. Math. Anal. 2019, 10, 123–130. [Google Scholar]
- Alb Lupaş, A.; Oros, G.I. Fuzzy Differential Subordination and Superordination Results Involving the q-Hypergeometric Function and Fractional Calculus Aspects. Mathematics 2022, 10, 4121. [Google Scholar] [CrossRef]
- Oros, G.I. Best Subordinant for Differential Superordinations of Harmonic Complex-Valued Functions. Mathematics 2020, 8, 2041. [Google Scholar] [CrossRef]
- Oros, G.I.; Oros, G. Differential superordination for harmonic complex-valued functions. Stud. Univ. Babes-Bolyai Math. 2019, 64, 487–496. [Google Scholar] [CrossRef]
- Kanas, S. Differential subordinations for harmonic complex-valued functions. arXiv 2015, arXiv:1509.037511V1. [Google Scholar]
- Kanas, S.; Klimek-Smet, D. Coefficient Estimates and Bloch’s Constant in Some Classes of Harmonic Mappings. Bull. Malays. Math. Sci. Soc. 2016, 39, 741–750. [Google Scholar] [CrossRef]
- Clunie, J.; Sheil-Small, T. Harmonic univalent functions. Ann. Acad. Sci. Fenn. Ser. A I Math 1984, 9, 3–25. [Google Scholar] [CrossRef]
- Sheil-Small, T. Constants for planar harmonic mappings. J. Lond. Math. Soc. 1990, 2, 237–248. [Google Scholar] [CrossRef]
- Ahuja, O.P.; Çetinkaya, A.; Polatoğlu, Y. Harmonic univalent convex functions using a quantum calculus approach. Acta Univ. Apulensis 2019, 58, 67–81. [Google Scholar]
- Jackson, F.H. On q-functions and a certain difference operator. Trans. R. Soc. Edinb 1908, 46, 253–281. [Google Scholar] [CrossRef]
- Wiman, A. Über den Fundamentalsatz in der Teorie der Funktionen E(x). Acta Math. 1905, 29, 191–201. [Google Scholar] [CrossRef]
- Schneider, W. Completely monotone generalized Mittag–Leffler functions. Expo Math. 1996, 14, 3–16. [Google Scholar]
- Garra, R.; Polito, F. On some operators involving Hadamard derivatives. Int. Transf. Spec. Funct. 2013, 14, 773–782. [Google Scholar] [CrossRef]
- Sharma, S.K.; Jain, R. On some properties of generalized q-Mittag Leffler function. Math. Aeterna 2014, 4, 613–619. [Google Scholar]
- Gerhold, S. Asymptotics for a variant of the Mittag–Leffler function. Integral Transform. Spec. Funct. 2012, 23, 397–403. [Google Scholar] [CrossRef]
- Ahuja, O.P. Planar harmonic univalent and related mappings. J. Inequal. Pure Appl. Math. 2005, 6, 122. [Google Scholar]
- Ahuja, O.P. Recent advances in the theory of harmonic univalent mappings in the plane. Math. Stud. 2014, 83, 125–154. [Google Scholar]
- Duren, P. Harmonic Mappings in the Plane; Cambridge Tracts in Math.V156; Cambridge University Press: Cambridge, UK, 2004; Volume 156, ISBN 0-521-64121-7. [Google Scholar]
- Robertson, M.S. On the theory of univalent functions. Ann. Math. 1936, 37.2, 374–408. [Google Scholar] [CrossRef]
- Seoudy, T.M.; Aouf, M.K. Coefficient estimates of new classes of q–starlike and q–convex functions of complex order. J. Math. Inequal. 2016, 10, 135–145. [Google Scholar] [CrossRef]
- Ahuja, O.P.; Jahangiri, J.M.; Silverman, H. Convolutions for special classes of harmonic univalent functions. Appl. Math. Lett. 2003, 16, 905–909. [Google Scholar] [CrossRef]
- Jahangiri, J.M. Coefficient bounds and univalence criteria for harmonic functions with negative Coefficient. Ann. Univ. Marie Curie-Sklodowska Sect. A 1998, 52, 57–66. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsoboh, A.; Amourah, A.; Darus, M.; Rudder, C.A. Studying the Harmonic Functions Associated with Quantum Calculus. Mathematics 2023, 11, 2220. https://doi.org/10.3390/math11102220
Alsoboh A, Amourah A, Darus M, Rudder CA. Studying the Harmonic Functions Associated with Quantum Calculus. Mathematics. 2023; 11(10):2220. https://doi.org/10.3390/math11102220
Chicago/Turabian StyleAlsoboh, Abdullah, Ala Amourah, Maslina Darus, and Carla Amoi Rudder. 2023. "Studying the Harmonic Functions Associated with Quantum Calculus" Mathematics 11, no. 10: 2220. https://doi.org/10.3390/math11102220
APA StyleAlsoboh, A., Amourah, A., Darus, M., & Rudder, C. A. (2023). Studying the Harmonic Functions Associated with Quantum Calculus. Mathematics, 11(10), 2220. https://doi.org/10.3390/math11102220