Trends in Agroforestry Research from 1993 to 2022: A Topic Model Using Latent Dirichlet Allocation and HJ-Biplot
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Preprocessing Texts
2.3. Creation Model Latent Dirichlet Allocation
2.4. Labeling Topics
2.5. Quantitative Indices Used to Analyze the Trend of Topics
2.6. HJ-Biplot
3. Results
Topic Modeling Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ayub, M.A.; Usman, M.; Faiz, T.; Umair, M.; Haq, M.A.U.; Rizwan, M.; Ali, S.; Rehman, M.Z.U. Restoration of Degraded Soil for Sustainable Agriculture. In Soil Health Restoration and Management; Springer: Berlin/Heidelberg, Germany, 2019; pp. 31–81. [Google Scholar] [CrossRef]
- Carson, R. Silent Spring 1962; Mariner Books Classics: New York, NY, USA, 2009; Available online: https://www.amazon.com/Silent-Spring-Rachel-Carson/dp/0618249060 (accessed on 22 February 2023).
- Das, S.; Aria, A.; Cheng, J.-O.; Souissi, S.; Hwang, J.-S.; Ko, F.-C. Occurrence and distribution of anthropogenic persistent organic pollutants in coastal sediments and mud shrimps from the wetland of central Taiwan. PLoS ONE 2020, 15, e0227367. [Google Scholar]
- Dou, R.; Sun, J.; Deng, F.; Wang, P.; Zhou, H.; Wei, Z.; Chen, M.; He, Z.; Lai, M.; Ye, T.; et al. Contamination of pyrethroids and atrazine in greenhouse and open-field agricultural soils in China. Sci. Total Environ. 2020, 701, 134916. [Google Scholar] [CrossRef] [PubMed]
- Litalien, A.; Zeeb, B. Curing the earth: A review of anthropogenic soil salinization and plant-based strategies for sustainable mitigation. Sci. Total. Environ. 2020, 698, 134235. [Google Scholar] [CrossRef]
- Panwar, S. Vulnerability of Himalayan springs to climate change and anthropogenic impact: A review. J. Mt. Sci. 2020, 17, 117–132. [Google Scholar] [CrossRef]
- Sanaullah, M.; Usman, M.; Wakeel, A.; Alam Cheema, S.; Ashraf, I.; Farooq, M. Terrestrial ecosystem functioning affected by agricultural management systems: A review. Soil Tillage Res. 2020, 196, 104464. [Google Scholar] [CrossRef]
- Ramirez-Llodra, E. Deep-Sea Ecosystems: Biodiversity and Anthropogenic Impacts. In The Law of the Seabed; Brill Nijhoff: Leiden, Belgium, 2020; pp. 36–60. [Google Scholar]
- Rivera-Rivera, D.M.; Escobedo-Urías, D.C.; Jonathan, M.P.; Sujitha, S.B.; Chidambaram, S. Evidence of natural and anthropogenic impacts on rainwater trace metal geochemistry in central Mexico: A statistical approach. Water 2020, 12, 192. [Google Scholar] [CrossRef]
- Yang, L.; Zhou, Y.; Shi, B.; Meng, J.; He, B.; Yang, H.; Yoon, S.J.; Kim, T.; Kwon, B.-O.; Khim, J.S.; et al. Anthropogenic impacts on the contamination of pharmaceuticals and personal care products (PPCPs) in the coastal environments of the Yellow and Bohai seas. Environ. Int. 2020, 135, 105306. [Google Scholar] [CrossRef]
- Wu, J.; Kurosaki, Y.; Du, C. Evaluation of climatic and anthropogenic impacts on dust erodibility: A case study in Xilingol Grassland, China. Sustainability 2020, 12, 629. [Google Scholar] [CrossRef]
- Winch, D.; James, P. An Essay on the Principle of Population: Or, a View of Its Past and Present Effects on Human Happiness: With an Inquiry into Our Prospects Respecting the Future Removal or Mitigation of the Evils Which It Occasions; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Peters, G.P.; Andrew, R.M.; Canadell, J.G.; Friedlingstein, P.; Jackson, R.B.; Korsbakken, J.I.; Le Quéré, C.; Peregon, A. Carbon dioxide emissions continue to grow amidst slowly emerging climate policies. Nat. Clim. Chang. 2020, 10, 3–6. [Google Scholar] [CrossRef]
- Sadatshojaie, A.; Rahimpour, M.R. CO2 emission and air pollution (volatile organic compounds, etc.)-related problems causing climate change. Curr. Trends Future Dev. (Bio-) Membr. Membr. Environ. Appl. 2020, 1–13. [Google Scholar] [CrossRef]
- Canadell, J.G.; Jackson, R.B.; Ciais, P.; Besnard, S.; Yao, Y.; Yue, C.; Carvalhais, N.; Poulter, B.; Pugh, T.; Chave, J.; et al. The global carbon balance of forests based on flux towers and forest age data. In AGU Fall Meeting Abstracts; American Geophysical Union: Washington, DC, USA, 2019; p. B34D-01. Available online: https://ui.adsabs.harvard.edu/abs/2019AGUFM.B34D..01C/abstract (accessed on 22 February 2023).
- Chambers, J.Q.; Higuchi, N.; Tribuzy, E.S.; Trumbore, S.E. ‘Carbon sink for a century. Nature 2001, 410, 429. [Google Scholar] [CrossRef] [PubMed]
- Erb, K.-H.; Kastner, T.; Luyssaert, S.; Houghton, R.A.; Kuemmerle, T.; Olofsson, P.; Haberl, H. Bias in the attribution of forest carbon sinks. Nat. Clim. Chang. 2013, 3, 854–856. [Google Scholar] [CrossRef]
- Huang, L.; Zhou, M.; Lv, J.; Chen, K. Trends in global research in forest carbon sequestration: A bibliometric analysis. J. Clean. Prod. 2020, 252, 119908. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A Large and Persistent Carbon Sink in the World’s Forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Pugh, T.A.M.; Lindeskog, M.; Smith, B.; Poulter, B.; Arneth, A.; Haverd, V.; Calle, L. Role of forest regrowth in global carbon sink dynamics. Proc. Natl. Acad. Sci. USA 2019, 116, 4382–4387. [Google Scholar] [CrossRef]
- Sedjo, R.A. Temperate forest ecosystems in the global carbon cycle. Ambio 1992, 21, 274–277. [Google Scholar]
- Zhu, K.; Song, Y.; Qin, C. Forest age improves understanding of the global carbon sink. Proc. Natl. Acad. Sci. USA 2019, 116, 3962–3964. [Google Scholar] [CrossRef]
- Birhane, E.; Ahmed, S.; Hailemariam, M.; Negash, M.; Rannestad, M.M.; Norgrove, L. Carbon stock and woody species diversity in homegarden agroforestry along an elevation gradient in southern Ethiopia. Agrofor. Syst. 2020, 94, 1099–1110. [Google Scholar] [CrossRef]
- Dhyani, S.K.; Ram, A.; Newaj, R.; Handa, A.K.; Dev, I. Agroforestry for carbon sequestration in tropical India. In Carbon Management in Tropical and Sub-Tropical Terrestrial Systems; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- Horrillo, A.; Gaspar, P.; Escribano, M. Organic Farming as a Strategy to Reduce Carbon Footprint in Dehesa Agroecosystems: A Case Study Comparing Different Livestock Products. Animals 2020, 10, 162. [Google Scholar] [CrossRef]
- Ortiz-Ceballos, G.C.; Vargas-Mendoza, M.; Ortiz-Ceballos, A.I.; Briseño, M.M.; Ortiz-Hernández, G. Aboveground Carbon Storage in Coffee Agroecosystems: The Case of the Central Region of the State of Veracruz in Mexico. Agronomy 2020, 10, 382. [Google Scholar] [CrossRef]
- Sari, R.R.; Saputra, D.D.; Hairiah, K.; Rozendaal, D.M.A.; Roshetko, J.M.; van Noordwijk, M. Gendered Species Preferences Link Tree Diversity and Carbon Stocks in Cacao Agroforest in Southeast Sulawesi, Indonesia. Land 2020, 9, 108. [Google Scholar] [CrossRef]
- PSanchez, P.A. Science in agroforestry. Agrofor. Syst. 1995, 30, 5–55. [Google Scholar] [CrossRef]
- Pattanayak, S.K.; Mercer, D.E.; Sills, E.; Yang, J.-C. Taking stock of agroforestry adoption studies. Agrofor. Syst. 2003, 57, 173–186. [Google Scholar] [CrossRef]
- Coe, R.; Sinclair, F.; Barrios, E. Scaling up agroforestry requires research ‘in’ rather than ‘for’ development. Curr. Opin. Environ. Sustain. 2014, 6, 73–77. [Google Scholar] [CrossRef]
- Kwesiga, F.; Akinnifesi, F.K.; Mafongoya, P.L.; McDermott, M.H.; Agumya, A. Agroforestry research and development in southern Africa during the 1990s: Review and challenges ahead. Agrofor. Syst. 2003, 59, 173–186. [Google Scholar] [CrossRef]
- Nair, P.K.R. Directions in tropical agroforestry research: Past, present, and future. In Agroforestry Systems; Springer: Berlin/Heidelberg, Germany, 1998; pp. 223–245. [Google Scholar] [CrossRef]
- Griffiths, T.L.; Steyvers, M. Finding scientific topics. Proc. Natl. Acad. Sci. USA 2004, 101 (Suppl. 1), 5228–5235. [Google Scholar] [CrossRef]
- Hornik, K.; Grün, B. Topicmodels: An R package for fitting topic models. J. Stat. Softw. 2011, 40, 1–30. [Google Scholar]
- Geman, S.; Geman, D. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images. IEEE Trans. Pattern Anal. Mach. Intell. 1984, PAMI-6, 721–741. [Google Scholar] [CrossRef]
- Villardon, M.P.G. Una Alternativa de Representación Simultánea: HJ-Biplot. QüEstiió: Quaderns d’estadística i Investigació Operativa. 1986, pp. 13–23. Available online: https://www.raco.cat/index.php/Questiio/article/download/26468/26302 (accessed on 22 February 2023).
- Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent Dirichlet allocation. J. Mach. Learn. Res. 2003, 3, 993–1022. [Google Scholar] [CrossRef]
- Xiong, H.; Cheng, Y.; Zhao, W.; Liu, J. Analyzing scientific research topics in manufacturing field using a topic model. Comput. Ind. Eng. 2019, 135, 333–347. [Google Scholar] [CrossRef]
- Harzing, A.-W.; Alakangas, S. Google Scholar, Scopus and the Web of Science: A longitudinal and cross-disciplinary comparison. Scientometrics 2016, 106, 787–804. [Google Scholar] [CrossRef]
- De la Hoz-M, J.; Fernández-Gómez, M.J.; Mendes, S. LDAShiny: An R Package for Exploratory Review of Scientific Literature Based on a Bayesian Probabilistic Model and Machine Learning Tools. Mathematics 2021, 9, 1671. [Google Scholar] [CrossRef]
- Team, R. R Studio—Google Académico; RStudio: Integrated Development for R. RStudio Inc.: Boston, MA, USA, 2018. [Google Scholar]
- Blei, D.M.; Lafferty, J.D. A correlated topic model of Science. Ann. Appl. Stat. 2007, 1, 17–35. [Google Scholar] [CrossRef]
- Röder, M.; Both, A.; Hinneburg, A. Exploring the space of topic coherence measures. In Proceedings of the Eighth ACM International Conference on Web Search and Data Mining, Shanghai, China, 2–6 February 2015; pp. 399–408. [Google Scholar]
- Chang, J.; Boyd-Graber, J.; Gerrish, S.; Wang, C.; Blei, D.M.; Chang, J.; Boyd-Graber, J.; Gerrish, S.; Wang, C.; Blei, D.M. Reading tea leaves: How humans interpret topic models. In Advances in Neural Information Processing Systems 22—Proceedings of the 2009 Conference, Vancouver, BC, Canada, 7–10 December 2009; Neural Information Processing Systems Foundation: San Diego, CA, USA, 2009; Available online: https://proceedings.neurips.cc/paper/2009/hash/f92586a25bb3145facd64ab20fd554ff-Abstract.html (accessed on 22 February 2023).
- Jones, T.; Doane, W. TextmineR: Functions for Text Mining and Topic Modeling, R package version 3.0.4; 2019. Available online: https://rdrr.io/cran/textmineR/ (accessed on 22 February 2023).
- Lau, J.H.; Grieser, K.; Newman, D.; Baldwin, T. Automatic labelling of topic models. In Proceedings of the ACL-HLT 2011—Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Portland, OR, USA, 19–24 June 2011. [Google Scholar]
- Van Eck, N.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Vicente-Villardón. MULTBIPLOT: A Package for Multivariate Analysis Using Biplots; Departamento de Estadística, Universidad de Salmanca: Salamanca, Spain, 2010. [Google Scholar]
- Liu, W.; Yao, S.; Wang, J.; Liu, M. Trends and Features of Agroforestry Research Based on Bibliometric Analysis. Sustainability 2019, 11, 3473. [Google Scholar] [CrossRef]
- EURAF. Agroforestry as Sustainable Land Use. In Proceedings of the 4th European Agroforestry Conference, Nijmegen, The Netherlands, 28–30 May 2018. [Google Scholar]
- Puri, S.; Nair, P. Agroforestry research for development in India: 25 years of experiences of a national program. Agrofor. Syst. 2004, 61–62, 437–452. [Google Scholar] [CrossRef]
- Somarriba, E. Diagnóstico y diseño agroforestal. Agrofor. Am. 1998, 5, 68–72. [Google Scholar]
- Cannell, M.G.R. Soil Productivity Aspects of Agroforestry. By P. K. R. Nair. Nairobi: International Council for Research in Agroforestry (1984), pp. 83, price unstated. Exp. Agric. 1985, 21, 299. [Google Scholar] [CrossRef]
- Perfecto, I.; Vandermeer, J.H.; Bautista, G.L.; Nunñez, G.I.; Greenberg, R.; Bichier, P.; Langridge, S. Greater predation in shaded coffee farms: The role of resident neotropical birds. Ecology 2004, 85, 2677–2681. [Google Scholar] [CrossRef]
- Klein, A.-M.; Steffan-Dewenter, I.; Tscharntke, T. Bee pollination and fruit set of Coffea arabica and C. canephora (Rubiaceae). Am. J. Bot. 2003, 90, 153–157. [Google Scholar] [CrossRef]
- Ricketts, T.H.; Daily, G.C.; Ehrlich, P.R.; Michener, C.D. Economic value of tropical forest to coffee production. Proc. Natl. Acad. Sci. USA 2004, 101, 12579–12582. [Google Scholar] [CrossRef] [PubMed]
- Buresh, R.J.; Tian, G. Soil improvement by trees in sub-Saharan Africa. Agrofor. Syst. 1997, 38, 51–76. [Google Scholar] [CrossRef]
- Young, A. Soil productivity, soil conservation and land evaluation. Agrofor. Syst. 1987, 5, 277–291. [Google Scholar] [CrossRef]
Description | Results |
---|---|
Main information about data | |
Timespan | 1993:2022 |
Sources (journals, books, etc.) | 1564 |
Documents | 9794 |
Annual growth rate % | 7.63 |
Document average age | 9.8 |
Average citations per doc | 22.48 |
References | 1 |
Document contents | |
Keywords plus (ID) | 19,986 |
Author’s keywords (DE) | 20,415 |
Authors | |
Authors | 25,174 |
Authors of single-authored docs | 654 |
Authors collaboration | |
Single-authored docs | 771 |
Co-authors per doc | 4.41 |
International co-authorships % | 37.99 |
Document types | |
Article | 9173 |
Review | 621 |
Sources | Articles |
---|---|
Agroforestry Systems | 1549 |
Agriculture, Ecosystems and Environment | 307 |
Sustainability (Switzerland) | 197 |
Forest Ecology and Management | 188 |
Forests | 149 |
Plant and Soil | 118 |
Forests Trees and Livelihoods | 112 |
Science of the Total Environment | 82 |
Agricultural Systems | 81 |
Land Use Policy | 76 |
Biodiversitas | 75 |
Small-Scale Forestry | 75 |
Journal of Sustainable Forestry | 74 |
Land | 72 |
Biodiversity and Conservation | 68 |
Land Degradation and Development | 64 |
Journal of Environmental Management | 62 |
Plos One | 60 |
Journal of Forestry Research | 56 |
Range Management and Agroforestry | 53 |
Agricultural and Forest Meteorology | 52 |
Agronomy | 50 |
Current Science | 50 |
Environmental Management | 50 |
Agronomy for Sustainable Development | 49 |
TOPIC | LAB. ALGORIT | LABEL ASIGNED | P | R | ART. | TOPICS TERMS | ||||
---|---|---|---|---|---|---|---|---|---|---|
t_28 | soil_organ | soil organic carbon | 4.799 | 1 | 825 | soil | organ | depth | soc | properti |
t_16 | agroforestri_practic | adoption of agroforestry practices | 4.931 | 2 | 785 | farmer | farm | agroforestri | practic | adopt |
t_27 | speci_rich | biodiversity | 4.527 | 3 | 694 | divers | landscap | speci | habitat | conserv |
t_13 | climat_chang | climatic change global policies | 4.656 | 4 | 511 | project | develop | polici | approach | base |
t_21 | climat_chang | carbon and climatic change | 3.36 | 5 | 487 | carbon | climat | chang | stock | climat_chang |
t_6 | food_secur | food security | 4.594 | 6 | 485 | develop | food | research | sustain | resourc |
t_15 | fine_root | fine root | 3.265 | 7 | 483 | root | plant | growth | seedl | treatment |
t_12 | land_cover | land cover | 3.866 | 8 | 392 | land | area | cover | agricultur | degrad |
t_10 | allei_crop | alley cropping | 3.626 | 9 | 389 | crop | yield | maiz | field | allei |
t_17 | remot_sens | remote sensors | 4.147 | 10 | 384 | model | data | method | estim | variabl |
t_20 | soil_water | soil water | 3.508 | 11 | 382 | water | season | temperatur | rainfal | dry |
t_11 | shade_tree | shade tree | 2.691 | 12 | 315 | coffe | shade | cacao | pest | shade_tree |
t_3 | raw_materi | raw materials production | 2.597 | 13 | 303 | wood | energi | potenti | product | pine |
t_26 | product_system | production systems | 3.408 | 14 | 298 | product | econom | cost | benefit | market |
t_23 | soil_fertil | soil fertility | 3.081 | 15 | 298 | fertil | nutrient | fallow | increas | soil_fertil |
t_4 | intercrop_system | intercrop systems | 3.017 | 16 | 282 | intercrop | plant | space | wheat | poplar |
t_25 | plant_speci | plant species | 3.343 | 17 | 268 | speci | plant | nativ | divers | woodi |
t_22 | ecosystem_servic | ecosystem services | 3.51 | 18 | 265 | manag | agricultur | ecosystem | servic | practic |
t_30 | aboveground_biomass | aboveground biomass | 3.191 | 19 | 260 | biomass | year | growth | height | stand |
t_18 | genet_divers | genetic diversity | 2.568 | 20 | 227 | popul | genet | select | variat | trait |
t_2 | leaf_litter | leaf litter | 2.588 | 21 | 221 | litter | leaf | rate | content | concentr |
t_8 | local_peopl | local knowledge | 3.326 | 22 | 216 | local | tradit | knowledg | region | import |
t_14 | silvopastor_system | silvopastoral systems | 2.22 | 23 | 201 | pastur | grass | livestock | product | forag |
t_24 | secondari_forest | secondary forests | 3.048 | 24 | 177 | forest | af | natur | tropic | restor |
t_9 | agroforestri_system | agroforestry systems | 3.548 | 25 | 159 | system | agroforestri | agroforestri_system | base | monocultur |
t_7 | fruit_tree | fruit tree | 2.127 | 26 | 155 | fruit | cocoa | africa | pollin | west |
t_1 | tree_speci | tree species | 3.358 | 27 | 148 | tree | tree_speci | densiti | canopi | busi_media |
t_29 | cork_oak | cork oak | 2.124 | 28 | 78 | term | forestri | long | agro | long_term |
t_5 | rubber_plantat | rubber plantations | 1.782 | 29 | 58 | plantat | rubber | monocultur | palm | oil |
t_19 | fungal_commun | fungal communities | 3.192 | 30 | 48 | effect | posit | factor | affect | influenc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montes-Escobar, K.; De la Hoz-M, J.; Barreiro-Linzán, M.D.; Fonseca-Restrepo, C.; Lapo-Palacios, M.Á.; Verduga-Alcívar, D.A.; Salas-Macias, C.A. Trends in Agroforestry Research from 1993 to 2022: A Topic Model Using Latent Dirichlet Allocation and HJ-Biplot. Mathematics 2023, 11, 2250. https://doi.org/10.3390/math11102250
Montes-Escobar K, De la Hoz-M J, Barreiro-Linzán MD, Fonseca-Restrepo C, Lapo-Palacios MÁ, Verduga-Alcívar DA, Salas-Macias CA. Trends in Agroforestry Research from 1993 to 2022: A Topic Model Using Latent Dirichlet Allocation and HJ-Biplot. Mathematics. 2023; 11(10):2250. https://doi.org/10.3390/math11102250
Chicago/Turabian StyleMontes-Escobar, Karime, Javier De la Hoz-M, Mónica Daniela Barreiro-Linzán, Carolina Fonseca-Restrepo, Miguel Ángel Lapo-Palacios, Douglas Andrés Verduga-Alcívar, and Carlos Alfredo Salas-Macias. 2023. "Trends in Agroforestry Research from 1993 to 2022: A Topic Model Using Latent Dirichlet Allocation and HJ-Biplot" Mathematics 11, no. 10: 2250. https://doi.org/10.3390/math11102250
APA StyleMontes-Escobar, K., De la Hoz-M, J., Barreiro-Linzán, M. D., Fonseca-Restrepo, C., Lapo-Palacios, M. Á., Verduga-Alcívar, D. A., & Salas-Macias, C. A. (2023). Trends in Agroforestry Research from 1993 to 2022: A Topic Model Using Latent Dirichlet Allocation and HJ-Biplot. Mathematics, 11(10), 2250. https://doi.org/10.3390/math11102250