An Optimal Inequality for the Normal Scalar Curvature in Metallic Riemannian Space Forms
Abstract
:1. Introduction
2. Preliminaries
3. Generalized Wintgen Inequality for -Slant Submanifolds
4. Consequences of Theorem 1
- 1.
- Firstly, we could consider the particular classes of -slant submanifolds i.e., either invariant or anti-invariant. In this case, we have the following result as a particular case of Theorem 1
- (i)
- If M is invariant, then
- (ii)
- If M is anti-invariant, then
- 2.
- Secondly, we can consider the particular classes of metallic product spaces, such as a golden structure or so-called silver, copper, nickel, and bronze structures by taking the particular values of p and q. For example, the inequality (12) for the locally golden space form will be
- (i)
- If M is θ-slant, then
- (ii)
- If M is invariant, then
- (iii)
- If M is anti-invariant, then
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wintgen, P. Sur l’inegalite de Chen-Willmore. CR Acad. Sci. Paris Ser. A-B 1979, 288, A993–A995. [Google Scholar]
- Guadalupe, I.V.; Rodriguez, L. Normal curvature of surfaces in space forms. Pacific J. Math. 1983, 106, 95–103. [Google Scholar] [CrossRef]
- Rouxel, B. Sur une Famille des A-Surfaces d’un Espace Euclidien E4; Osterreischer Mathematiker Kongress: Insbruck, Austria, 1981. [Google Scholar]
- Chen, B.-Y. A Wintgen type inequality for surfaces in 4 D neutral pseudo-Riemannian space forms and its applications to minimal immersions. JMI Int. J. Math. Sci. 2010, 1, 1–12. [Google Scholar]
- Chen, B.-Y. Wintgen ideal surfaces in four-dimensional neutral indefinite space form (c). Results Math. 2012, 61, 329–345. [Google Scholar] [CrossRef]
- Smet, P.J.D.; Dillen, F.; Verstraelen, L.; Vrancken, L. A pointwise inequality in submanifold theory. Arch. Math. 1999, 35, 115–128. [Google Scholar]
- Ge, J.Q.; Tang, Z.Z. A proof of the DDVV conjecture and its equality case. Pacific J. Math. 2008, 237, 87–95. [Google Scholar] [CrossRef]
- Lu, Z. Normal scalar curvature conjecture and its applications. J. Funct. Anal. 2011, 261, 1284–1308. [Google Scholar] [CrossRef]
- Choudhary, M.A.; Bahadir, O.; Alsulami, H. Generalized Wintgen inequality for some submanifolds in Golden Riemannian space forms. Balk. J. Geom. Its Appl. 2020, 25, 1–11. [Google Scholar]
- Mihai, I. On the generalized Wintgen inequality for Lagrangian submanifolds in complex space forms. Nonlinear Anal. 2014, 95, 714–720. [Google Scholar] [CrossRef]
- Mihai, I. On the generalized Wintgen inequality for Legendrian submanifolds in Sasakian space forms. Tohoku Math. J. 2017, 69, 43–53. [Google Scholar] [CrossRef]
- Lee, C.W.; Lee, J.W.; Vilcu, G.-E. Generalized wintgen inequality for submanifolds in generalized (κ, μ)-space forms. Quaest. Math. 2022, 45, 497–511. [Google Scholar] [CrossRef]
- Chen, B.Y. Recent developments in Wintgen inequality and Wintgen ideal submanifold. Int. Electron. Geom. 2021, 14, 6–45. [Google Scholar] [CrossRef]
- Crasmareanu, M.; Hretcanu, C. Golden differential geometry. Chaos Solitons Fractals 2008, 38, 1229–1238. [Google Scholar] [CrossRef]
- Hretcanu, C.; Crasmareanu, M. Metallic structures on Riemannian manifolds. Rev. Union Mat. Argent. 2013, 54, 15–27. [Google Scholar]
- Blaga, A.M.; Nannicini, A. On curvature tensors of Norden and metallic pseudo-Riemannian manifold. Complex Manifolds 2019, 6, 150–159. [Google Scholar] [CrossRef]
- Blaga, A.M.; Nannicini, A. On the geometry of generalized metallic pseudo-Riemannian structures. Riv. Mat. Della Univ. Parma 2020, 11, 69–87. [Google Scholar]
- Blaga, A.M.; Hretcanu, C.E. Invariant, anti-invariant and slant submanifolds of a metallic Riemannian manifold. Novi Sad J. Math. 2018, 48, 57–82. [Google Scholar] [CrossRef]
- Hretcanu, C.E.; Blaga, A.M. Hemi-slant submanifolds in metallic Riemannian manifolds. Carpathian J. Math. 2019, 35, 59–68. [Google Scholar] [CrossRef]
- Hretcanu, C.E.; Blaga, A.M. Slant and semi-slant submanifolds in metallic Riemannian manifolds. J. Funct. Spaces 2018, 2018, 2864263. [Google Scholar] [CrossRef]
- Hretcanu, C.E.; Blaga, A.M. Warped product pointwise bi-slant submanifolds in metallic Riemannian manifolds. arXiv 2020, arXiv:2002.10909v2. [Google Scholar]
- Blaga, A.M.; Hretcanu, C.E. Remarks on metallic warped product manifolds. Facta Univ. 2018, 33, 269–277. [Google Scholar] [CrossRef]
- Hretcanu, C.E.; Blaga, A.M. Warped product submanifolds in metallic and Golden Riemannian manifolds. Tamkang J. Math. 2020, 51, 161–186. [Google Scholar] [CrossRef]
- Friedmann, A.; Schouten, A. Uber die Geometrie der halbsymmetrischen Ubertragungen. Math. Z. 1924, 21, 211–223. [Google Scholar] [CrossRef]
- Hayden, H.A. Subspaces of a space with torsion. Proc. London Math. Soc. 1932, 34, 27–50. [Google Scholar] [CrossRef]
- Yano, K. On semi-symmetric metric connection. Rev. Roum. Math. Pure Appl. 1970, 15, 1579–1586. [Google Scholar]
- Mihai, A.; Ozgur, C. Chen inequalities for submanifolds of real space forms with a semi-symmetric metric connection. Taiwan. J. Math. 2010, 14, 1465–1477. [Google Scholar] [CrossRef]
- Mihai, A.; Ozgur, C. Chen inequalities for submanifolds of complex space forms and Sasakian space forms endowed with semi-symmetric metric connection. Rocky Mt. J. Math. 2011, 41, 1653–1673. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, L.; Song, W. Inequalities for submanifolds of a Riemannian manifold of quasi-constant curvature with a semi-symmetric metric connection. Taiwan. J. Math. 2014, 18, 1841–1862. [Google Scholar] [CrossRef]
- Nakao, Z. Submanifolds of a Riemannian manifold with semi-symmetric metric connections. Proc. Amer. Math. Soc. 1976, 54, 261–266. [Google Scholar] [CrossRef]
- Imai, T. Notes on semi-symmetric metric connection. Tensor 1972, 24, 293–296. [Google Scholar]
- Mihai, I.; Al-Solamy, F.R.; Shahid, M.H. On Ricci curvature of a quaternion CR-submanifold in a quaternion space form. Rad. Mat. 2003, 12, 91–98. [Google Scholar]
- Goldberg, S.I.; Yano, K. Polynomial structures on manifolds. Kodai Math. Sem. Rep. 1970, 22, 199–218. [Google Scholar] [CrossRef]
- Hretcanu, C.; Crasmareanu, M. Applications of the golden ratio on Riemannian manifolds. Turkish J. Math. 2009, 33, 179–191. [Google Scholar] [CrossRef]
- Bahadir, O.; Uddin, S. Slant submanifolds of golden Riemannian manifolds. J. Math. Ext. 2019, 13, 1–10. [Google Scholar]
- Pitis, G. On some submanifolds of a locally product manifold. Kodai Math. J. 1986, 9, 327–333. [Google Scholar] [CrossRef]
- Choudhary, M.A.; Blaga, A.M. Generalized Wintgen inequality for slant submanifolds in metallic Riemannian space forms. J. Geom. 2021, 112, 26. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uddin, S.; Choudhary, M.A.; Al-Asmari, N.M. An Optimal Inequality for the Normal Scalar Curvature in Metallic Riemannian Space Forms. Mathematics 2023, 11, 2252. https://doi.org/10.3390/math11102252
Uddin S, Choudhary MA, Al-Asmari NM. An Optimal Inequality for the Normal Scalar Curvature in Metallic Riemannian Space Forms. Mathematics. 2023; 11(10):2252. https://doi.org/10.3390/math11102252
Chicago/Turabian StyleUddin, Siraj, Majid Ali Choudhary, and Najwa Mohammed Al-Asmari. 2023. "An Optimal Inequality for the Normal Scalar Curvature in Metallic Riemannian Space Forms" Mathematics 11, no. 10: 2252. https://doi.org/10.3390/math11102252
APA StyleUddin, S., Choudhary, M. A., & Al-Asmari, N. M. (2023). An Optimal Inequality for the Normal Scalar Curvature in Metallic Riemannian Space Forms. Mathematics, 11(10), 2252. https://doi.org/10.3390/math11102252