Biharmonic Maps on f-Kenmotsu Manifolds with the Schouten–van Kampen Connection
Abstract
:1. Introduction
2. Preliminaries
3. Harmonic and Biharmonic Maps on -Kenmotsu Manifolds
Biharmonic Maps on f-Kenmotsu Manifolds
4. Biharmonic Maps on -Kenmotsu with the Schouten–van Kampen Connection
Biharmonic Identity Map with the Schouten–van Kampen Connection
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eells, J.; Sampson, J.H. Harmonic mappings of Riemannian manifolds. Am. J. Math. 1964, 86, 109–160. [Google Scholar] [CrossRef]
- Ishihara, T. Harmonic sections of tangent bundles. J. Math. Univ. Tokushima 1979, 13, 23–27. [Google Scholar]
- Oproiu, V. On Harmonic Maps Between Tangent Bundles. Rend. Sem. Mat. 1989, 47, 47–55. [Google Scholar]
- Djaa, M.; El Hendi, H.; Ouakkas, S. Biharmonic vector field. Turkish J. Math. 2012, 36, 463–474. [Google Scholar] [CrossRef]
- Najma, A. Harmonic maps on Kenmotsu manifolds. An. Ştiint. Univ. “Ovidius” Constanţa Ser. Mat. 2013, 21, 197–208. [Google Scholar]
- Zagane, A.; Ouakkas, S. Biharmonic maps on kenmotsu manifolds. New Trans. Math. Sci. 2016, 4, 129–139. [Google Scholar] [CrossRef]
- Mangione, V. Harmonic Maps and Stability on f-Kenmotsu Manifolds. Int. J. Math. Math. Sci. 2008, 7, 798317. [Google Scholar] [CrossRef]
- Inoguchi, J.I.; Lee, J.E. Biharmonic curves in f-Kenmotsu 3-manifolds. J. Math. Ana. Appl. 2022, 509, 125941. [Google Scholar] [CrossRef]
- Abbes, M.E.; Ouakkas, S. On the τ-Homothetic BI-Warping and Biharmonic Maps. J. Dyn. Sys. Geo. Theo. 2020, 18, 281–309. [Google Scholar] [CrossRef]
- Blair, D.E. Contact Manifolds in Riemannian Geometry; Lecture Note in Mathematics; Springer: Berlin/Heidelberg, Germany, 1976; Volume 509. [Google Scholar]
- Khan, M.N.I. Novel theorems for the frame bundle endowed with metallic structures on an almost contact metric manifold. Chaos Solitons Fractals 2021, 146, 110872. [Google Scholar] [CrossRef]
- Janssens, D.; Vanhecke, L. Almost contact structures and curvature tensors. Kodai Math. J. 1981, 4, 1–27. [Google Scholar] [CrossRef]
- De, U.C.; Pathok, G. On 3-dimensional Kenmotsu manifolds. Indian J. Pure Appl. Math. 2004, 35, 159–165. [Google Scholar]
- Kenmotsu, K. A class of almost contact Riemannian manifold. Tohoku Math. J. 1972, 24, 93–103. [Google Scholar] [CrossRef]
- Zhang, P.; Li, Y.; Roy, S.; Dey, S.; Bhattacharyya, A. Geometrical Structure in a Perfect Fluid Spacetime with Conformal Ricci-Yamabe Soliton. Symmetry 2022, 14, 594. [Google Scholar] [CrossRef]
- Bejancu, A.; Duggal, K.L. Real hypersurfaces of indefinite Kaehler manifolds. Int. J. Math. Math. Sci. 1993, 16, 545–556. [Google Scholar] [CrossRef]
- Calin, C.; Crasmareanu, M. From the Eisenhart problem to Ricci solitons in f-Kenmotsu manifolds. Bull. Malaysian. Math. Soc. 2010, 33, 361–368. [Google Scholar]
- De, U.C. On f-symmetric Kenmotsu manifolds. Int. Electron. J. Geom. 2008, 1, 33–38. [Google Scholar]
- Demirli, T.; Ekici, C.; Gorgulu, A. Ricci solitons in f-Kenmotsu manifolds with the semi-symmetric non-metric connection. New Trans. Math. Sci. 2016, 4, 276–284. [Google Scholar] [CrossRef]
- Yildiz, A.; De, U.C.; Turan, M. On 3-dimensional f-Kenmotsu manifolds and Ricci solitons. Ukr. Math. J. 2013, 65, 684–693. [Google Scholar] [CrossRef]
- Yildiz, A. f-Kenmotsu manifolds with the Schouten–van Kampen connection. Publ. Inst. Math. 2017, 102, 93–105. [Google Scholar] [CrossRef]
- De, U.C.; Yildiz, A.; Yaliniz, F. On f-recurrent Kenmotsu manifolds. Turkish J. Math. 2009, 22, 17–25. [Google Scholar]
- Blair, D.E. Riemannian Geometry of Contact and Symplectic Manifolds, 2nd ed.; Progress in Mathematics; Birkhauser Boston, Inc.: Boston, MA, USA, 2010; Volume 203. [Google Scholar]
- Olszak, Z. Locally conformal almost cosymplectic manifolds. Colloq. Math. 1989, 57, 73–87. [Google Scholar] [CrossRef]
- Olszak, Z.; Rosca, R. Normal locally conformal almost cosymplectic manifolds. Publ. Math. 1991, 39, 315–323. [Google Scholar] [CrossRef]
- Manev, H.; Manev, M. Almost Paracontact Almost Paracomplex Riemannian Manifolds with a Pair of Associated Schouten–van Kampen Connections. Mathematics 2021, 9, 736. [Google Scholar] [CrossRef]
- Olszak, Z. The Schouten–van Kampen affine connection adapted to an almost (para) contact metric structure. Publ. Inst. Math. 2013, 94, 31–42. [Google Scholar] [CrossRef]
- Bejancu, A.; Faran, H. Foliations and Geometric Structures; Math, appl; Springer: Dordrecht, The Netherlands, 2006; Volume 580. [Google Scholar]
- Solov’ev, A.F. On the curvature of the connection induced on a hyperdistribution in a Riemannian space. Geom. Sb. 1978, 19, 12–23. [Google Scholar]
- Ashis, M. Legendre curves on 3-dimensional f-Kenmotsu manifolds admitting Schouten-Van Kampen connection. Facta Univers Math Info. 2020, 35, 357–366. [Google Scholar]
- Ashis, M. On f-Kenmotsu manifolds admitting Schouten-Van Kampen connection. Korean J. Math. 2021, 29, 333–344. [Google Scholar]
- Gherghe, C.; Ianus, S.; Pastore, A.M. Harmonic maps, harmonic morphism and stability. Bull. Math. Soc. Sci. Math. Roum. 2000, 43, 247–254. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El hendi, H. Biharmonic Maps on f-Kenmotsu Manifolds with the Schouten–van Kampen Connection. Mathematics 2023, 11, 1905. https://doi.org/10.3390/math11081905
El hendi H. Biharmonic Maps on f-Kenmotsu Manifolds with the Schouten–van Kampen Connection. Mathematics. 2023; 11(8):1905. https://doi.org/10.3390/math11081905
Chicago/Turabian StyleEl hendi, Hichem. 2023. "Biharmonic Maps on f-Kenmotsu Manifolds with the Schouten–van Kampen Connection" Mathematics 11, no. 8: 1905. https://doi.org/10.3390/math11081905
APA StyleEl hendi, H. (2023). Biharmonic Maps on f-Kenmotsu Manifolds with the Schouten–van Kampen Connection. Mathematics, 11(8), 1905. https://doi.org/10.3390/math11081905