Figure 1.
The viscoelastic Maxwell-type DVA with an inerter and multiple stiffness springs.
Figure 1.
The viscoelastic Maxwell-type DVA with an inerter and multiple stiffness springs.
Figure 2.
The normalized amplitude–frequency curves under different damping ratios: (a) , , and ; (b) and .
Figure 2.
The normalized amplitude–frequency curves under different damping ratios: (a) , , and ; (b) and .
Figure 3.
The relationship of : (a) space; (b) space; (c) space; (d) space.
Figure 3.
The relationship of : (a) space; (b) space; (c) space; (d) space.
Figure 4.
The relationship of : (a) space; (b) space.
Figure 4.
The relationship of : (a) space; (b) space.
Figure 5.
The relationship of : (a) space; (b) space.
Figure 5.
The relationship of : (a) space; (b) space.
Figure 6.
Comparison between the numerical solution and analytical solution in initial optimization (): (a) 0.1; (b) 0.2; (c) 0.3; (d) 0.4.
Figure 6.
Comparison between the numerical solution and analytical solution in initial optimization (): (a) 0.1; (b) 0.2; (c) 0.3; (d) 0.4.
Figure 7.
Comparison between the numerical solution and analytical solution when optimizing the single variable (): (a) 0.1; (b) 0.2; (c) 0.3; (d) 0.4.
Figure 7.
Comparison between the numerical solution and analytical solution when optimizing the single variable (): (a) 0.1; (b) 0.2; (c) 0.3; (d) 0.4.
Figure 8.
Iterations when optimizing the single variable (, 0.1): (a) 0.1; (b) 0.2; (c) 0.3; (d) 0.4.
Figure 8.
Iterations when optimizing the single variable (, 0.1): (a) 0.1; (b) 0.2; (c) 0.3; (d) 0.4.
Figure 9.
Comparison between the numerical solution and analytical solution when optimizing the single variable (): (a) 0.1; (b) 0.2; (c) 0.3; (d) 0.4.
Figure 9.
Comparison between the numerical solution and analytical solution when optimizing the single variable (): (a) 0.1; (b) 0.2; (c) 0.3; (d) 0.4.
Figure 10.
Comparison between numerical solution and analytical solution when optimizing four variables, , , , and , at the same time: (a) 0.1; (b) 0.2; (c) 0.3; (d) 0.4.
Figure 10.
Comparison between numerical solution and analytical solution when optimizing four variables, , , , and , at the same time: (a) 0.1; (b) 0.2; (c) 0.3; (d) 0.4.
Figure 11.
The optimal parameters verification when optimizing the single variable : (a) change ; (b) change ; (c) change ; (d) change ; (e) change ; (f) change .
Figure 11.
The optimal parameters verification when optimizing the single variable : (a) change ; (b) change ; (c) change ; (d) change ; (e) change ; (f) change .
Figure 12.
The DVA models: (a) Den; (b) Ren; (c) Asami; (d) Wang; (e) Asami with negative stiffness; (f) Wang with negative stiffness.
Figure 12.
The DVA models: (a) Den; (b) Ren; (c) Asami; (d) Wang; (e) Asami with negative stiffness; (f) Wang with negative stiffness.
Figure 13.
The time history of the random excitation.
Figure 13.
The time history of the random excitation.
Figure 14.
The time history of three cases based on particle swarm optimization (, , all): (a) [0, 10]; (b) [10, 20]; (c) [20, 30].
Figure 14.
The time history of three cases based on particle swarm optimization (, , all): (a) [0, 10]; (b) [10, 20]; (c) [20, 30].
Figure 15.
The time history of the primary system with models when 0.1: (a) comparison of this paper and without DVA; (b) comparison between different inerter-to-mass ratios ( 0.1 and 0.5).
Figure 15.
The time history of the primary system with models when 0.1: (a) comparison of this paper and without DVA; (b) comparison between different inerter-to-mass ratios ( 0.1 and 0.5).
Figure 16.
The time history of the primary system with models when : (a) Den; (b) Ren; (c) Asami; (d) Wang; (e) Asami with negative stiffness; (f) Wang with negative stiffness.
Figure 16.
The time history of the primary system with models when : (a) Den; (b) Ren; (c) Asami; (d) Wang; (e) Asami with negative stiffness; (f) Wang with negative stiffness.
Table 1.
The specific parameters of the system with different inerter-to-mass ratios in initial optimization ().
Table 1.
The specific parameters of the system with different inerter-to-mass ratios in initial optimization ().
Case 1: 0.1, | |
0.1 | 0.2094 , 0.1078 , 1.2320 , 0.6389 |
0.5 | 0.5405 , 0.1061 , 1.3079 , 1.3554 |
1.0 | 0.8209 , 0.0909 , 1.2516 , 1.9951 |
1.5 | 1.0125 , 0.0780 , 1.1794 , 2.5051 |
2.0 | 1.1511 , 0.0679 , 1.1124 , 2.9397 |
Case 2: 0.2, | |
0.1 | 0.3037 , 0.1110 , 0.9063 , 0.6002 |
0.5 | 0.6063 , 0.1031 , 0.9200 , 1.0597 |
1.0 | 0.8648 , 0.0880 , 0.8749 , 1.4885 |
1.5 | 1.0437 , 0.0757 , 0.8241 , 1.8364 |
2.0 | 1.1744 , 0.0661 , 0.7778 , 2.1355 |
Case 3: 0.3, | |
0.1 | 0.3899 , 0.1106 , 0.7523 , 0.5969 |
0.5 | 0.6667 , 0.1000 , 0.7454 , 0.9428 |
1.0 | 0.9057 , 0.0853 , 0.7059 , 1.2763 |
1.5 | 1.0730 , 0.0736 , 0.6649 , 1.5509 |
2.0 | 1.1964 , 0.0645 , 0.6281 , 1.7889 |
Case 4: 0.4, | |
0.1 | 0.4686 , 0.1087 , 0.6548 , 0.6007 |
0.5 | 0.7222 , 0.0969 , 0.6395 , 0.8799 |
1.0 | 0.9437 , 0.0827 , 0.6040 , 1.1561 |
1.5 | 1.1006 , 0.0716 , 0.5691 , 1.3865 |
2.0 | 1.2172 , 0.0629 , 0.5380 , 1.5876 |
Table 2.
The specific parameters of the system in different cases of the inerter-to-mass ratio when optimizing the single variable ().
Table 2.
The specific parameters of the system in different cases of the inerter-to-mass ratio when optimizing the single variable ().
Case 1: | 0.1 | | | | | | | |
| | | | | | | | |
0.1 | 0.6389 | 2.7821 | 0.7063 | 2.7370 | 1.8288 | 0.625 | 1.234 | 0.609 |
0.5 | 1.3554 | 2.2072 | 1.5275 | 2.1358 | 1.5391 | 0.517 | 1.243 | 0.726 |
1.0 | 1.9951 | 1.9117 | 2.2771 | 1.8269 | 1.3865 | 0.437 | 1.249 | 0.812 |
1.5 | 2.5051 | 1.7570 | 2.8845 | 1.6649 | 1.3046 | 0.383 | 1.253 | 0.870 |
2.0 | 2.9397 | 1.6612 | 3.4085 | 1.5641 | 1.2529 | 0.344 | 1.257 | 0.913 |
Case 2: | 0.2 | | | | | | | |
| | | | | | | | |
0.1 | 0.6002 | 2.5747 | 0.6679 | 2.5200 | 1.7248 | 0.591 | 1.237 | 0.646 |
0.5 | 1.0597 | 2.1280 | 1.1979 | 2.0531 | 1.4986 | 0.498 | 1.244 | 0.746 |
1.0 | 1.4885 | 1.8735 | 1.7022 | 1.7870 | 1.3664 | 0.425 | 1.250 | 0.825 |
1.5 | 1.8364 | 1.7344 | 2.1177 | 1.6411 | 1.2925 | 0.375 | 1.254 | 0.879 |
2.0 | 2.1355 | 1.6463 | 2.4791 | 1.5483 | 1.2447 | 0.337 | 1.258 | 0.921 |
Case 3: | 0.3 | | | | | | | |
| | | | | | | | |
0.1 | 0.5969 | 2.4220 | 0.6677 | 2.3602 | 1.6480 | 0.563 | 1.239 | 0.676 |
0.5 | 0.9428 | 2.0613 | 1.0687 | 1.9834 | 1.4642 | 0.481 | 1.245 | 0.764 |
1.0 | 1.2763 | 1.8396 | 1.4623 | 1.7515 | 1.3485 | 0.413 | 1.251 | 0.838 |
1.5 | 1.5509 | 1.7138 | 1.7910 | 1.6195 | 1.2814 | 0.366 | 1.255 | 0.889 |
2.0 | 1.7889 | 1.6324 | 2.0792 | 1.5336 | 1.2371 | 0.331 | 1.259 | 0.928 |
Case 4: | 0.4 | | | | | | | |
| | | | | | | | |
0.1 | 0.6007 | 2.3031 | 0.6746 | 2.2359 | 1.5878 | 0.539 | 1.241 | 0.702 |
0.5 | 0.8799 | 2.0043 | 0.9999 | 1.9237 | 1.4347 | 0.465 | 1.247 | 0.782 |
1.0 | 1.1561 | 1.8092 | 1.3269 | 1.7196 | 1.3324 | 0.403 | 1.252 | 0.849 |
1.5 | 1.3865 | 1.6948 | 1.6034 | 1.5995 | 1.2711 | 0.359 | 1.256 | 0.897 |
2.0 | 1.5876 | 1.6194 | 1.8474 | 1.5199 | 1.2300 | 0.325 | 1.260 | 0.935 |
Table 3.
The specific parameters of the system in different inerter-to-mass ratios when optimizing the other variables (, 0.1).
Table 3.
The specific parameters of the system in different inerter-to-mass ratios when optimizing the other variables (, 0.1).
| 0.1 | 0.5 | 1.0 | 1.5 | 2.0 |
| 0.2428 | 0.6467 | 1.0072 | 1.2658 | 1.4591 |
| 1.9098 | 1.6181 | 1.4601 | 1.3744 | 1.3202 |
| 2.7754 | 2.1711 | 1.8560 | 1.6893 | 1.5853 |
| 1.142 | 1.099 | 1.061 | 1.034 | 1.013 |
| 0.1 | 0.5 | 1.0 | 1.5 | 2.0 |
| −0.0981 | −0.0733 | −0.0302 | 0.0084 | 0.0424 |
| 1.8970 | 1.6372 | 1.4954 | 1.4175 | 1.3677 |
| 2.8039 | 2.2305 | 1.9323 | 1.7746 | 1.6764 |
| 0.617 | 0.517 | 0.447 | 0.402 | 0.370 |
| 1.209 | 1.195 | 1.182 | 1.174 | 1.168 |
| 0.592 | 0.678 | 0.735 | 0.772 | 0.798 |
| 0.1 | 0.5 | 1.0 | 1.5 | 2.0 |
| 1.2617 | 1.3753 | 1.3464 | 1.2903 | 1.2333 |
| 1.8373 | 1.5504 | 1.3971 | 1.3138 | 1.2607 |
| 2.7349 | 2.1274 | 1.8151 | 1.6516 | 1.5503 |
| 0.588 | 0.459 | 0.368 | 0.309 | 0.268 |
| 1.230 | 1.240 | 1.247 | 1.253 | 1.258 |
| 0.642 | 0.781 | 0.879 | 0.944 | 0.990 |
Table 4.
The specific parameters of the system in different cases of inerter-to-mass ratio when optimizing four variables, , , , and ().
Table 4.
The specific parameters of the system in different cases of inerter-to-mass ratio when optimizing four variables, , , , and ().
Case 1: | 0.1 | | | | | | | |
| | | | | | | | |
0.1 | 0.2346 | −0.1045 | 1.2346 | 0.6612 | 1.8151 | −0.0137 | −0.0222 | 2.7579 |
0.5 | 0.5898 | −0.1010 | 1.3242 | 1.4165 | 1.5269 | −0.0122 | −0.0235 | 2.1360 |
1.0 | 0.9062 | −0.0792 | 1.2712 | 2.0833 | 1.3821 | −0.0044 | −0.0150 | 1.8276 |
1.5 | 1.1576 | −0.0664 | 1.2005 | 2.6207 | 1.2930 | −0.0116 | −0.0208 | 1.6546 |
2.0 | 1.3392 | −0.0576 | 1.1368 | 3.0753 | 1.2375 | −0.0154 | −0.0232 | 1.5467 |
Case 2: | 0.2 | | | | | | | |
| | | | | | | | |
0.1 | 0.3249 | −0.1047 | 0.9086 | 0.6224 | 1.7311 | 0.0063 | −0.0037 | 2.5447 |
0.5 | 0.6497 | −0.0968 | 0.9300 | 1.1182 | 1.4921 | −0.0065 | −0.0178 | 2.0559 |
1.0 | 0.9437 | −0.0825 | 0.8868 | 1.5852 | 1.3520 | −0.0144 | −0.0248 | 1.7799 |
1.5 | 1.1789 | −0.0666 | 0.8424 | 1.9237 | 1.2782 | −0.0143 | −0.0232 | 1.6288 |
2.0 | 1.3677 | −0.0560 | 0.7942 | 2.2385 | 1.2290 | −0.0157 | −0.0233 | 1.5306 |
Case 3: | 0.3 | | | | | | | |
| | | | | | | | |
0.1 | 0.4079 | −0.1030 | 0.7544 | 0.6267 | 1.6603 | 0.0123 | 0.0016 | 2.3830 |
0.5 | 0.7113 | −0.0950 | 0.7547 | 1.0015 | 1.4545 | −0.0097 | −0.0210 | 1.9817 |
1.0 | 1.0262 | −0.0754 | 0.7199 | 1.3287 | 1.3365 | −0.0120 | −0.0221 | 1.7424 |
1.5 | 1.2059 | −0.0648 | 0.6802 | 1.6278 | 1.2671 | −0.0143 | −0.0229 | 1.6073 |
2.0 | 1.4099 | −0.0507 | 0.6371 | 1.8823 | 1.2249 | −0.0122 | −0.0196 | 1.5177 |
Case 4: | 0.4 | | | | | | | |
| | | | | | | | |
0.1 | 0.4877 | −0.1009 | 0.6595 | 0.6312 | 1.5985 | 0.0107 | −0.0005 | 2.2532 |
0.5 | 0.7599 | −0.0912 | 0.6441 | 0.9496 | 1.4289 | −0.0058 | −0.0169 | 1.9254 |
1.0 | 1.0724 | −0.0694 | 0.6149 | 1.2030 | 1.3251 | −0.0073 | −0.0171 | 1.7141 |
1.5 | 1.2400 | −0.0613 | 0.5801 | 1.4608 | 1.2584 | −0.0127 | −0.0211 | 1.5889 |
2.0 | 1.4140 | −0.0528 | 0.5505 | 1.6637 | 1.2143 | −0.0157 | −0.0228 | 1.5020 |
Table 5.
The variances and decreasing ratios of the displacements in the primary system.
Table 5.
The variances and decreasing ratios of the displacements in the primary system.
Models | Variances | Decrease Ratios (%) |
---|
Without DVA | 2.57202 × 10 | / |
DVA by Den Hartog | 3.73465 × 10 | 85.48 |
DVA by Ren | 3.36063 × 10 | 86.93 |
DVA by Asami | 3.37462 × 10 | 86.88 |
DVA by Wang | 4.12604 × 10 | 83.96 |
DVA by Asami with negative stiffness | 1.83878 × 10 | 92.85 |
DVA by Wang with negative stiffness | 1.86308 × 10 | 92.76 |
The presented model ( 0.1, 0.1) | 1.60176 × 10 | 93.77 |
The presented model ( 0.1, 0.5) | 1.26826 × 10 | 95.07 |
The presented model ( 0.1, 1.0) | 1.10374 × 10 | 95.71 |
The presented model ( 0.1, 1.5) | 9.66774 × 10 | 96.24 |
The presented model ( 0.1, 2.0) | 9.16522 × 10 | 96.44 |