Computing Nash Equilibria for Multiplayer Symmetric Games Based on Tensor Form
Abstract
:1. Introduction
2. Preliminaries
3. Description of the -Person Symmetric Game
- (i)
- is k-mode symmetric for all ;
- (ii)
- If , then , for all satisfies .
4. Algorithm and Numerical Results
Algorithm 1 Hyperplane projection algorithm to calculate the symmetric Nash equilibrium |
|
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nash, J. Equilibrium points in n-person games. Proc. Natl. Acad. Sci. USA 1950, 36, 48–49. [Google Scholar] [CrossRef] [PubMed]
- Nash, J. Non-cooperative games. Ann. Math. 1951, 54, 286–295. [Google Scholar] [CrossRef]
- He, K.; Wu, H.; Wang, Z.; Li, H. Finding Nash equilibrium for imperfect information games via fictitious play based on local regret minimization. Int. J. Intell. Syst. 2022, 37, 6152–6167. [Google Scholar] [CrossRef]
- Berthelsen, M.L.T.; Hansen, K.A. On the computational complexity of decision problems about multi-player Nash equilibria. Theor. Comput. Syst. 2022, 66, 519–545. [Google Scholar] [CrossRef]
- Palm, G. Evolutionary stable strategies and game dynamics for n-person games. J. Math. Biol. 1984, 19, 329–334. [Google Scholar] [CrossRef]
- Kreps, D.M. Game Theory and Economic Modelling; Oxford University Press: Oxford, UK, 1990. [Google Scholar]
- Von Stengel, B. Computing equilibria for two-person games. Handb. Game Theory Econ. Appl. 2002, 3, 1723–1759. [Google Scholar]
- Govindan, S.; Wilson, R. A global Newton method to compute Nash equilibria. J. Econ. Theory 2003, 110, 65–86. [Google Scholar] [CrossRef]
- Cheng, S.F.; Reeves, D.M.; Vorobeychik, Y.; Wellman, M.P. Notes on Equilibria in Symmetric Games. In Proceedings of the 6th International Workshop on Game Theoretic and Decision Theoretic Agents GTDT 2004, New York, NY, USA, 20 July 2004; pp. 71–78. [Google Scholar]
- Roughgardenl, T. Computing equilibria in multi-player games. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Vancouver, BC, Canada, 23–25 January 2005; Volume 118, p. 82. [Google Scholar]
- Amir, R.; Jakubczyk, M.; Knauff, M. Symmetric versus asymmetric equilibria in symmetric supermodular games. Int. J. Game Theory 2008, 37, 307–320. [Google Scholar] [CrossRef]
- Hefti, A. Equilibria in symmetric games: Theory and applications. Theor. Econ. 2017, 12, 979–1002. [Google Scholar] [CrossRef]
- Reny, P.J. Nash equilibrium in discontinuous games. Annu. Rev. Econ. 2020, 12, 439–470. [Google Scholar] [CrossRef]
- Bilò, V.; Mavronicolas, M. The complexity of computational problems about Nash equilibria in symmetric win-lose games. Algorithmica 2021, 83, 447–530. [Google Scholar] [CrossRef]
- Armony, M.; Roels, G.; Song, H. Capacity choice game in a multiserver queue: Existence of a Nash equilibrium. Nav. Res. Log. 2021, 68, 663–678. [Google Scholar] [CrossRef]
- Passacantando, M.; Raciti, F. A note on generalized Nash games played on networks. In Nonlinear Analysis, Differential Equations, and Applications; Rassias, T.M., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 365–380. [Google Scholar] [CrossRef]
- Bomze, I.M. Non-cooperative two-person games in biology: A classification. Int. J. Game Theory 1986, 15, 31–57. [Google Scholar] [CrossRef]
- Myerson, R.B. Nash equilibrium and the history of economic theory. J. Econ. Lit. 1999, 37, 1067–1082. [Google Scholar] [CrossRef]
- Smith, J.M. Evolutionary game theory. Physica D 1986, 22, 43–49. [Google Scholar] [CrossRef]
- Broom, M.; Rychtár, J. Game-Theoretical Models in Biology; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Rapoport, A.; Chammah, A.M.; Orwant, C.J. Prisoner’s Dilemma: A Study in Conflict and Cooperation; University of Michigan Press: Ann Arbor, MI, USA, 1965; Volume 165. [Google Scholar]
- Axelrod, R.; Hamilton, W.D. The evolution of cooperation. Science 1981, 211, 1390–1396. [Google Scholar] [CrossRef] [PubMed]
- Sugden, R. The Economics of Rights, Co-Operation and Welfare; Palgrave Macmillan: London, UK, 2004. [Google Scholar]
- Skyrms, B. The Stag Hunt and the Evolution of Social Structure; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Lemke, C.E.; Howson, J.T., Jr. Equilibrium points of bimatrix games. J. Soc. Indust. Appl. Math. 1964, 12, 413–423. [Google Scholar] [CrossRef]
- Gowda, M.S.; Sznajder, R. A generalization of the Nash equilibrium theorem on bimatrix games. Int. J. Game Theory 1996, 25, 1–12. [Google Scholar] [CrossRef]
- Wilson, R. Computing equilibria of n-person games. SIAM J. Appl. Math. 1971, 21, 80–87. [Google Scholar] [CrossRef]
- Souza, M.O.; Pacheco, J.M.; Santos, F.C. Evolution of cooperation under N-person snowdrift games. J. Theor. Biol. 2009, 260, 581–588. [Google Scholar] [CrossRef]
- Santos, M.D.; Pinheiro, F.L.; Santos, F.C.; Pacheco, J.M. Dynamics of N-person snowdrift games in structured populations. J. Theor. Biol. 2012, 315, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Rosenschein, J.S.; Zlotkin, G. Rules of Encounter: Designing Conventions for Automated Negotiation among Computers; MIT Press: Cambridge, MA, USA, 1994. [Google Scholar]
- Huang, Z.; Qi, L. Formulating an n-person noncooperative game as a tensor complementarity problem. Comput. Optim. Appl. 2017, 66, 557–576. [Google Scholar] [CrossRef]
- Abdou, J.; Safatly, E.; Nakhle, B.; Khoury, A.E. High-dimensional nash equilibria problems and tensors applications. Int. Game Theory Rev. 2017, 19, 1750015. [Google Scholar] [CrossRef]
- Kolda, T.G.; Bader, B.W. Tensor decompositions and applications. SIAM Rev. 2009, 51, 455–500. [Google Scholar] [CrossRef]
- Kofidis, E.; Regalia, P.A. On the best rank-1 approximation of higher-order supersymmetric tensors. SIAM J. Matrix Anal. Appl. 2002, 23, 863–884. [Google Scholar] [CrossRef]
- Qi, L. Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 2005, 40, 1302–1324. [Google Scholar] [CrossRef]
- Ragnarsson, S.; Van Loan, C.F. Block tensors and symmetric embeddings. Linear Algebra Appl. 2013, 438, 853–874. [Google Scholar] [CrossRef]
- Facchinei, F.; Pang, J. Finite-Dimensional Variational Inequalities and Complementarity Problems; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007; Volume II. [Google Scholar]
- Murnighan, J.K.; Kim, J.W.; Metzger, A.R. The volunteer dilemma. Admin. Sci. Quart. 1993, 38, 515–538. [Google Scholar] [CrossRef]
- Archetti, M. The volunteer’s dilemma and the optimal size of a social group. J. Theor. Biol. 2009, 261, 475–480. [Google Scholar] [CrossRef]
- Song, Y.; Qi, L. Properties of some classes of structured tensors. J. Optimiz. Theory App. 2015, 165, 854–873. [Google Scholar] [CrossRef]
- Bai, X.; Huang, Z.; Wang, Y. Global uniqueness and solvability for tensor complementarity problems. J. Optimiz. Theory App. 2016, 170, 72–84. [Google Scholar] [CrossRef]
- Che, M.; Qi, L.; Wei, Y. Positiv × 10−6 definite tensors to nonlinear complementarity problems. J. Optimiz. Theory App. 2016, 168, 475–487. [Google Scholar] [CrossRef]
- Ding, W.; Luo, Z.; Qi, L. P-tensors, P0-tensors, and their applications. Linear Algebra Appl. 2018, 555, 336–354. [Google Scholar] [CrossRef]
- Luo, Z.; Qi, L.; Xiu, N. The sparsest solutions to Z-tensor complementarity problems. Optim. Lett. 2017, 11, 471–482. [Google Scholar] [CrossRef]
- Song, Y.; Qi, L. Tensor complementarity problem and semi-positive tensors. J. Optimiz. Theory App. 2016, 169, 1069–1078. [Google Scholar] [CrossRef]
- Song, Y.; Qi, L. Properties of tensor complementarity problem and some classes of structured tensors. arXiv 2014, arXiv:1412.0113. [Google Scholar]
- Xie, S.; Li, D.; Hongru, X. An iterative method for finding the least solution to the tensor complementarity problem. J. Optimiz. Theory App. 2017, 175, 119–136. [Google Scholar] [CrossRef]
- Ling, L.; He, H.; Ling, C. On error bounds of polynomial complementarity problems with structured tensors. Optimization 2018, 67, 341–358. [Google Scholar] [CrossRef]
- Song, Y.; Yu, G. Properties of solution set of tensor complementarity problem. J. Optimiz. Theory App. 2016, 170, 85–96. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Z.; Bai, X. Exceptionally regular tensors and tensor complementarity problems. Optimi. Method. Softw. 2016, 31, 815–828. [Google Scholar] [CrossRef]
- Cottle, R.; Pang, J.; Stone, R. The Linear Complementarity Problem; Society for Industrial and Applied Mathematic: Philadelphia, PA, USA, 1992. [Google Scholar]
- Sinervo, B.; Lively, C.M. The rock–paper–scissors game and the evolution of alternative male strategies. Nature 1996, 380, 240. [Google Scholar] [CrossRef]
- Chatterjee, B. An optimization formulation to compute Nash equilibrium in finite games. In Proceedings of the 2009 Proceeding of International Conference on Methods and Models in Computer Science (ICM2CS), Delhi, India, 14–15 December 2009; pp. 1–5. [Google Scholar] [CrossRef]
m | b | a | c | No.Iter | CPU(s) | Res | SNE |
---|---|---|---|---|---|---|---|
3 | 200 | 4 | 1 | 10 | 0.0582 | 4.18 × 10 | (0.5000,0.5000) |
4 | 2 | 41 | 0.2277 | 9.99 × 10 | (0.2929,0.7071) | ||
16 | 2 | 47 | 0.2644 | 7.62 × 10 | (0.6465,0.3235) | ||
32 | 1 | 50 | 0.3912 | 7.42 × 10 | (0.8232,0.1768) | ||
64 | 3 | 21 | 0.1919 | 9.82 × 10 | (0.7835,0.2165) | ||
192 | 3 | 72 | 0.6176 | 9.19 × 10 | (0.8750,0.1250) | ||
6 | 200 | 4 | 1 | 121 | 0.8751 | 9.18 × 10 | (0.2422,0.7578) |
4 | 2 | 101 | 0.7523 | 9.17 × 10 | (0.1295,0.8705) | ||
16 | 2 | 63 | 0.5111 | 8.43 × 10 | (0.3403,0.6597) | ||
32 | 1 | 9 | 0.1503 | 3.53 × 10 | (0.5000,0.5000) | ||
64 | 3 | 11 | 0.0818 | 3.54 × 10 | (0.4578,0.5422) | ||
192 | 3 | 14 | 0.1152 | 4.32 × 10 | (0.5647,0.4353) | ||
9 | 600 | 64 | 0.25 | 14 | 0.1891 | 5.95 × 10 | (0.5000,0.5000) |
64 | 0.5 | 59 | 0.5382 | 8.54 × 10 | (0.4548,0.5452) | ||
64 | 1 | 30 | 0.2826 | 5.90 × 10 | (0.4054,0.5946) | ||
512 | 0.25 | 88 | 0.7381 | 8.84 × 10 | (0.6145,0.3855) | ||
512 | 0.5 | 77 | 0.7354 | 6.79 × 10 | (0.5796,0.4204) | ||
512 | 1 | 54 | 0.6315 | 7.15 × 10 | (0.5415,0.4585) | ||
12 | 600 | 64 | 0.25 | 206 | 2.1890 | 9.43 × 10 | (0.3960,0.6040) |
64 | 0.5 | 143 | 1.8373 | 9.61 × 10 | (0.3567,0.6433) | ||
64 | 1 | 114 | 1.2770 | 9.67 × 10 | (0.3149,0.6851) | ||
512 | 0.25 | 11 | 0.5486 | 5.97 × 10 | (0.5000,0.5000) | ||
512 | 0.5 | 53 | 0.7763 | 9.67 × 10 | (0.4675,0.5325) | ||
512 | 1 | 27 | 0.5974 | 8.64 × 10 | (0.4329,0.5671) | ||
15 | 2500 | 2048 | 0.125 | 8 | 3.1455 | 3.90 × 10 | (0.5000,0.5000) |
2048 | 64 | 63 | 3.6172 | 4.56 × 10 | (0.2193,0.7807) | ||
2048 | 128 | 65 | 3.8518 | 9.35 × 10 | (0.1797,0.8203) | ||
1024 | 0.125 | 177 | 4.6659 | 9.93 × 10 | (0.4747,0.5253) | ||
1024 | 64 | 47 | 3.3835 | 8.62 × 10 | (0.1797,0.8203) | ||
1024 | 128 | 85 | 4.4102 | 7.11 × 10 | (0.1380,0.8620) |
m | b | c | No.Iter | CPU(s) | Res | SNE |
---|---|---|---|---|---|---|
3 | 8 | 1 | 71 | 0.3320 | 8.84 × 10 | (0.7686,0.2314) |
8 | 2 | 34 | 0.1822 | 8.49 × 10 | (0.6496,0.3504) | |
10 | 5 | 26 | 0.1606 | 8.69 × 10 | (0.4418,0.5582) | |
10 | 8 | 161 | 0.8231 | 8.92 × 10 | (0.1886,0.8114) | |
20 | 1 | 20 | 0.1729 | 9.22 × 10 | (0.8611,0.1389) | |
20 | 10 | 27 | 0.1719 | 7.46 × 10 | (0.4417,0.5583) | |
6 | 8 | 1 | 136 | 0.8696 | 8.79 × 10 | (0.4653,0.5347) |
8 | 2 | 134 | 0.7635 | 9.08 × 10 | (0.3595,0.6405) | |
10 | 5 | 132 | 0.8305 | 9.62 × 10 | (0.2162,0.7838) | |
10 | 8 | 157 | 0.9867 | 8.08 × 10 | (0.0817,0.9183) | |
20 | 1 | 92 | 0.5705 | 8.62 × 10 | (0.5711,0.4289) | |
20 | 10 | 92 | 0.6909 | 7.21 × 10 | (0.2162,0.7838) | |
9 | 8 | 1 | 95 | 0.7384 | 2.12 × 10 | (0.3291,0.6709) |
8 | 2 | 68 | 0.5151 | 8.84 × 10 | (0.2466,0.7534) | |
10 | 5 | 59 | 0.4447 | 3.20 × 10 | (0.1436,0.8574) | |
10 | 8 | 84 | 0.7784 | 8.17 × 10 | (0.0520,0.9480) | |
20 | 1 | 164 | 1.2335 | 9.53 × 10 | (0.4179,0.5821) | |
20 | 10 | 56 | 0.5454 | 4.96 × 10 | (0.1426,0.8574) | |
12 | 8 | 1 | 370 | 3.4376 | 9.99 × 10 | (0.2542,0.7458) |
8 | 2 | 283 | 2.6579 | 9.51 × 10 | (0.1876,0.8124) | |
10 | 5 | 191 | 1.8678 | 7.55 × 10 | (0.1065,0.8935) | |
10 | 8 | 198 | 1.9516 | 7.56 × 10 | (0.0383,0.9617) | |
20 | 1 | 319 | 3.0998 | 9.39 × 10 | (0.3283,0.6717) | |
20 | 10 | 161 | 1.5762 | 9.82 × 10 | (0.1066,0.8934) | |
15 | 8 | 1 | 357 | 6.1214 | 9.91 × 10 | (0.2068,0.7932) |
8 | 2 | 249 | 5.3642 | 9.38 × 10 | (0.1512,0.8488) | |
10 | 5 | 199 | 4.5910 | 9.94 × 10 | (0.0850,0.9150) | |
10 | 8 | 214 | 4.7155 | 8.20 × 10 | (0.0304,0.9696) | |
20 | 1 | 338 | 6.1258 | 9.69 × 10 | (0.2699,0.7301) | |
20 | 10 | 180 | 4.7217 | 9.65 × 10 | (0.0850,0.9150) |
m | n | Algorithm 1 | SQP | ||||
---|---|---|---|---|---|---|---|
AI/MinI/MaxI | AT/MinT/MaxT | ARes | AI/MinI/MaxI | AT/MinT/MaxT | ARes | ||
3 | 2 | 1297.7/71/2000 | 1.9203/0.1314/2.9314 | 2.29 × 10 | 14/9/23 | 0.0119/0.0086/0.0164 | 0.0072 |
3 | 1374.9/118/2000 | 2.4910/0.2232/3.9145 | 3.19 × 10 | 21.8/12/35 | 0.0221/0.0141/0.0379 | 0.0049 | |
4 | 380.6/69/2000 | 0.8019/0.1503/3.9355 | 8.08 × 10 | 41.1/16/168 | 0.0704/0.0229/0.2133 | 0.0012 | |
5 | 667.4/153/2000 | 1.4309/0.3711/3.9627 | 2.10 × 10 | 81.7/37/156 | 0.1838/0.0829/0.3470 | 0.0036 | |
6 | 399/172/651 | 0.9705/0.4316/1.5488 | 8.95 × 10 | 44.8/25/132 | 0.1944/0.1081/0.5831 | 0.0173 | |
7 | 485/87/2000 | 1.1525/0.2303/4.3484 | 2.48 × 10 | 59.3/26/119 | 0.4642/0.2081/0.9224 | 0.0110 | |
8 | 332.2/55/1202 | 0.8340/0.1746/2.9418 | 7.41 × 10 | 75.5/25/107 | 1.0498/0.3544/1.4911 | 0.0140 | |
9 | 128.6/81/236 | 0.3637/0.2370/0.6350 | 7.69 × 10 | 80/48/96 | 0.9293/1.172/2.3305 | 0.0251 | |
10 | 429.2/258/814 | 1.2628/0.7618/2.3894 | 7.86 × 10 | 78.7/39/88 | 3.093/1.5428/3.4604 | 0.0253 | |
4 | 2 | 691.3/86/2000 | 1.4046/0.1817/4.0237 | 8.86 × 10 | 12.2/7/38 | 0.0171/0.0090/0.0555 | 0.0102 |
3 | 343.4/138/847 | 0.7876/0.3111/1.9197 | 6.26 × 10 | 16.2/10/30 | 0.0336/0.0222/0.0581 | 0.0109 | |
4 | 762.8/168/2000 | 1.9433/0.4276/5.1434 | 2.69 × 10 | 31/16/70 | 0.2039/0.1077/0.4594 | 0.0056 | |
5 | 355/19/1062 | 0.9314/0.0577/2.7126 | 8.53 × 10 | 70/24/119 | 1.4742/0.5099/2.5418 | 0.0038 | |
6 | 410.2/142/1830 | 1.1065/0.4015/4.6913 | 7.97 × 10 | 82.5/34/103 | 4.7483/1.9861/5.9067 | 0.0201 | |
7 | 660.8/29/2000 | 1.9983/0.0916/6.0603 | 2.55 × 10 | 75.9/34/90 | 10.5529/4.7972/12.5189 | 0.0166 | |
8 | 12.8/10/15 | 0.0434/0.0358/0.0515 | 6.09 × 10 | 62.3/34/81 | 18.8267/10.3801/24.4131 | 0.0141 | |
9 | 9.3/7/13 | 0.0337/0.026/0.0458 | 5.11 × 10 | 65.1/39/73 | 39.0789/23.6408/43.7414 | 0.0165 | |
10 | 327.5/13/698 | 10.655/0.05/2.2376 | 2.81 × 10 | 62.6/32/66 | 71.0717/36.8483/74.9798 | 0.0215 | |
5 | 2 | 1296.9/273/2000 | 2.7576/0.6484/4.1878 | 1.06 × 10 | 15.4/7/30 | 0.023/0.0136/0.0396 | 2.34 × 10 |
3 | 527.1/14/1544 | 1.3769/0.0407/4.053 | 7.93 × 10 | 31.9/11/137 | 0.2725/0.0978/1.1768 | 0.0035 | |
4 | 737.7/220/2000 | 2.1013/0.6354/5.6562 | 8.94 × 10 | 38/17/115 | 1.981/0.9142/5.8807 | 0.0039 | |
5 | 820.6/83/2000 | 2.5495/0.2650/6.2649 | 2.78 × 10 | 48.1/20/96 | 11.0989/4.7046/21.9328 | 0.0028 | |
6 | 15.8/11/19 | 0.0555/0.0392/0.0658 | 7.60 × 10 | 60.5/29/83 | 47.4/23.0075/64.6011 | 0.0067 | |
7 | 11/9/16 | 0.0437/0.0362/0.0683 | 4.62 × 10 | 66.8/41/73 | 150.6369/93.0992/164.4944 | 0.0090 | |
8 | 1326.5/557/2000 | 5.0864/2.0911/7.6993 | 3.13 × 10 | 63.9/54/65 | 391.2597/329.9332/402.3262 | 0.0054 | |
9 | 1715.5/975/2000 | 6.5727/3.6809/7.8403 | 5.84 × 10 | 55.2/44/58 | 712.6175/570.5763/762.7578 | 0.0037 | |
10 | 1015.1/52/1876 | 4.3262/0.2259/8.2932 | 6.67 × 10 | 53/53/53 | 1400.4/1383.3/1435.9 | 0.0063 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Liao, Q. Computing Nash Equilibria for Multiplayer Symmetric Games Based on Tensor Form. Mathematics 2023, 11, 2268. https://doi.org/10.3390/math11102268
Liu Q, Liao Q. Computing Nash Equilibria for Multiplayer Symmetric Games Based on Tensor Form. Mathematics. 2023; 11(10):2268. https://doi.org/10.3390/math11102268
Chicago/Turabian StyleLiu, Qilong, and Qingshui Liao. 2023. "Computing Nash Equilibria for Multiplayer Symmetric Games Based on Tensor Form" Mathematics 11, no. 10: 2268. https://doi.org/10.3390/math11102268
APA StyleLiu, Q., & Liao, Q. (2023). Computing Nash Equilibria for Multiplayer Symmetric Games Based on Tensor Form. Mathematics, 11(10), 2268. https://doi.org/10.3390/math11102268