Bounds for the Error in Approximating a Fractional Integral by Simpson’s Rule
Abstract
:1. Introduction
2. Main Results of Simpson-Type Inequalities for Bounded Functions
2.1. Simpson-Type Inequalities of the First Sense
2.2. Simpson’s Type Inequalities of the Second Sense
2.3. Simpson’s Type Inequalities of the Third Sense
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alomari, M.; Darus, M.; Dragomir, S.S. New inequalities of Simpson’s type for s-convex functions with applications. RGMIA Res. Rep. Coll. 2009, 12. [Google Scholar]
- Sarikaya, M.Z.; Set, E.; Özdemir, M.E. On new inequalities of Simpson’s type for convex functions. RGMIA Res. Rep. Coll. 2010, 13, 2. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Set, E.; Özdemir, M.E. On new inequalities of Simpson’s type for s-convex functions. Comput. Math. Appl. 2020, 60, 2191–2199. [Google Scholar] [CrossRef]
- Du, T.; Li, Y.; Yang, Z. A generalization of Simpson’s inequality via differentiable mapping using extended (s,m)-convex functions. Appl. Math. Comput. 2017, 293, 358–369. [Google Scholar] [CrossRef]
- İşcan, İ. Hermite-Hadamard and Simpson-like type inequalities for differentiable harmonically convex functions. J. Math. 2014, 2014, 346305. [Google Scholar] [CrossRef]
- Li, Y.; Du, T. Some Simpson type integral inequalities for functions whose third derivatives are (α,m)-GA-convex functions. J. Egypt. Math. 2016, 24, 175–180. [Google Scholar] [CrossRef]
- Liu, W. Some Simpson type inequalities for h-convex and (α,m)-convex functions. J. Comput. Anal. App. 2014, 16, 1005–1012. [Google Scholar]
- Ozdemir, M.E.; Akdemir, A.O.; Kavurmacı, H. On the Simpson’s inequality for convex functions on the coordinates. Turk. Anal. Number Theory 2014, 2, 165–169. [Google Scholar] [CrossRef]
- Park, J. On Simpson-like type integral inequalities for differentiable preinvex functions. Appl. Math. Sci. 2013, 7, 6009–6021. [Google Scholar] [CrossRef]
- Matloka, M. Some inequalities of Simpson type for h-convex functions via fractional integrals. Abstr. Appl. Anal. 2015, 2015, 956850. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Set, E.; Özdemir, M.E. On new inequalities of Simpson’s type for functions whose second derivatives absolute values are convex. J. Appl. Math. Stat. Inform. 2013, 9, 37–45. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Aktan, N. On the generalization of some integral inequalities and their applications. Math. Computer Model. 2011, 54, 2175–2182. [Google Scholar] [CrossRef]
- Park, J. On Some Integral Inequalities for Twice Differentiable Quasi–Convex and Convex Functions via Fractional Integrals. Appl. Math. Sci. 2015, 9, 3057–3069. [Google Scholar] [CrossRef]
- Ozdemir, M.E.; Yildiz, C. New inequalities for Hermite-Hadamard and Simpson type with applications. Tamkang J. Math. 2013, 44, 209–216. [Google Scholar] [CrossRef]
- Hezenci, F.; Budak, H.; Kara, H. New version of Fractional Simpson type inequalities for twice differentiable functions. Adv. Differ. Equ. 2021, 2021, 460. [Google Scholar] [CrossRef]
- Hussain, S.; Qisar, S. More results on Simpson’s type inequality through convexity for twice differentiable continuous mappings. SpringerPlus 2016, 5, 77. [Google Scholar] [CrossRef]
- Vivas-Cortez, M.; Abdeljawad, T.; Mohammed, P.O.; Rangel-Oliveros, Y. Simpson’s integral inequalities for twice differentiable convex functions. Math. Probl. Eng. 2020, 2020, 1936461. [Google Scholar] [CrossRef]
- You, X.; Hezenci, F.; Budak, H.; Kara, H. New Simpson type inequalities for twice differentiable functions via generalized fractional integrals. AIMS Math. 2021, 7, 3959–3971. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Iqbal, M.; Qaisar, S.; Hussain, S. On Simpson’s type inequalities utilizing fractional integrals. J. Comput. Anal. Appl. 2017, 23, 1137–1145. [Google Scholar]
- Abdeljawad, T.; Rashid, S.; Hammouch, Z.; İşcan, İ.; Chu, Y.M. Some new Simpson-type inequalities for generalized p-convex function on fractal sets with applications. Adv. Differ. 2020, 2020, 496. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Agarwal, R.P.; Cerone, P. On Simpson’s inequality and applications. J. Inequal. Appl. 2000, 5, 533–579. [Google Scholar] [CrossRef]
- Hussain, S.; Khalid, J.; Chu, Y.M. Some generalized fractional integral Simpson’s type inequalities with applications. AIMS Math 2020, 5, 5859–5883. [Google Scholar] [CrossRef]
- Kermausuor, S. Simpson’s type inequalities via the Katugampola fractional integrals for s-convex functions. Kragujev. J. Math. 2021, 45, 709–720. [Google Scholar] [CrossRef]
- Liu, B.Z. An inequality of Simpson type. Proc. R. Soc. A Math. Phys. Eng. Sci. 2005, 461, 2155–2158. [Google Scholar] [CrossRef]
- Lei, H.; Hu, G.; Nie, J.; Du, T. Generalized Simpson-type inequalities considering first derivatives through the k-Fractional Integrals. Iaeng Int. J. Appl. Math. 2020, 50, 1–8. [Google Scholar]
- Rashid, S.; Akdemir, A.O.; Jarad, F.; Noor, M.A.; Noor, K.I. Simpson’s type integral inequalities for κ-fractional integrals and their applications. AIMS Math. 2019, 4, 1087–1100. [Google Scholar] [CrossRef]
- Budak, H.; Hezenci, F.; Kara, H. On parameterized inequalities of Ostrowski and Simpson type for convex functions via generalized fractional integrals. Math. Methods Appl. Sci. 2021, 44, 12522–12536. [Google Scholar] [CrossRef]
- Gorenflo, R.; Mainardi, F. Fractional Calculus: Integral and Differential Equations of Fractional Order; Springer: Vienna, Austria, 1997; pp. 223–276. [Google Scholar]
- Luo, C.; Du, T. Generalized Simpson type inequalities involving Riemann-Liouville fractional integrals and their applications. Filomat 2020, 34, 751–760. [Google Scholar] [CrossRef]
- Miller, S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Chen, J.; Huang, X. Some new inequalities of Simpson’s type for s-convex functions via fractional integrals. Filomat 2017, 31, 4989–4997. [Google Scholar] [CrossRef]
- Hai, X.; Wang, S.H. Simpson type inequalities for convex function based on the generalized fractional integrals. Turk. Inequal. 2021, 5, 1–15. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Budak, H.; Hezenci, F.; Kara, H.; Sarikaya, M.Z. Bounds for the Error in Approximating a Fractional Integral by Simpson’s Rule. Mathematics 2023, 11, 2282. https://doi.org/10.3390/math11102282
Budak H, Hezenci F, Kara H, Sarikaya MZ. Bounds for the Error in Approximating a Fractional Integral by Simpson’s Rule. Mathematics. 2023; 11(10):2282. https://doi.org/10.3390/math11102282
Chicago/Turabian StyleBudak, Hüseyin, Fatih Hezenci, Hasan Kara, and Mehmet Zeki Sarikaya. 2023. "Bounds for the Error in Approximating a Fractional Integral by Simpson’s Rule" Mathematics 11, no. 10: 2282. https://doi.org/10.3390/math11102282
APA StyleBudak, H., Hezenci, F., Kara, H., & Sarikaya, M. Z. (2023). Bounds for the Error in Approximating a Fractional Integral by Simpson’s Rule. Mathematics, 11(10), 2282. https://doi.org/10.3390/math11102282