Hamiltonians of the Generalized Nonlinear Schrödinger Equations
Abstract
:1. Introduction
2. Method Applied
3. Hamiltonian of the Generalized Nonlinear Schrödinger Equation of the Fourth Order
4. Hamiltonian of the Generalized Nonlinear Schrödinger Equation of the Sixth Order
5. Conservation Laws of the Generalized Kaup–Newell Equation
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Olver, P.J. Applications of Lie Groups to Differential Equations; Springer: New York, NY, USA, 1986. [Google Scholar]
- Kivshar, Y.S.; Agrawal, G.P. Optical Solitons. From Fibers to Photonic Crystals; Academic Press: Cambridge, MA, USA, 2003. [Google Scholar]
- Kivshar, Y.S.; Malomed, B.A. Dynamics of solitons in nearly integrable systems. Rev. Mod. Phys. 1989, 63, 763–915. [Google Scholar] [CrossRef]
- Kivshar, Y.S.; Pelinovsky, D.E. Self-focusing and transversive instabilities of solitary waves. Phys. Rep. 2000, 331, 117–195. [Google Scholar] [CrossRef]
- Poole, D.; Hereman, W. Symbolic computation of conservation laws for nonlinear partial differential equations in multiple apace dimensions. J. Symb. Comput. 2011, 46, 1355–1377. [Google Scholar] [CrossRef]
- Wu, G.-Z.; Fang, Y.; Kudryashov, N.A.; Wang, Y.-Y.; Dai, C.-Q. Prediction of optical solitons using an improved physics-informed neural network method with the conservation law constraint. Chaos Solitons Fractals 2022, 159, 112143. [Google Scholar] [CrossRef]
- Fang, Y.; Wu, G.-Z.; Kudryashov, N.A.; Wang, Y.-Y.; Dai, C.-Q. Data-driven soliton solutions and model parameters of nonlinear wave models via the conservation-law constrained neural network method. Chaos Solitons Fractals 2022, 158, 112118. [Google Scholar] [CrossRef]
- Pazarci, A.; Turhan, U.C.; Ghazanfari, N.; Gahramanov, I. Hamiltonian formalism for nonlinear Schrodinger equations. Commun. Nonlinear Sci. Numer. Simul. 2023, 121, 107191. [Google Scholar] [CrossRef]
- Bluman, G.W.; Chevyakov, A.F.; Anco, S.C. Application of symmetry Methods to Partial Differential Equations. In Applied Mathematical Sciences; Springer: New York, NY, USA, 2010; Volume 168. [Google Scholar]
- Biswas, A.; Kara, A.H.; Sun, Y.; Zhou, Q.; Yildirim, Y.; Alshehri, H.M.; Belic, M.R. Conservation laws for pure-cubic optical solitons with complex Ginzburg–Landau equation having several refractive index structures. Results Phys. 2021, 31, 104901. [Google Scholar] [CrossRef]
- Kudryashov, N.A.; Biswas, A.; Kara, A.H.; Yildirim, Y. Cubic–quartic optical solitons and conservation laws having cubic–quintic–septic–nonic self-phase modulation. Optik 2022, 269, 169834. [Google Scholar] [CrossRef]
- Sun, Z. A conservative scheme for two-dimensional Schrodinger equation based on multiquadric trigonometric quasi-interpolation approach. Appl. Math. Comput. 2022, 423, 126996. [Google Scholar] [CrossRef]
- Khalique, C.M.; Plaatjie, K.; Adeyemo, O.D. First integrals, solutions and conservation laws of the derivative nonlinear Schrodinger equation. Partial. Differ. Equations Appl. Math. 2022, 5, 100382. [Google Scholar] [CrossRef]
- Kara, A.H. A the invariance and conservation laws of the Triki-Biswas equation describing monomode optical fibers. Optik 2019, 186, 300–302. [Google Scholar] [CrossRef]
- Bergman, P.G. Non-linear field theories. Phys. Rev. 1949, 75, 680–685. [Google Scholar] [CrossRef]
- Bergman, P.G.; Brunings, J.H.M. Non-linear field theories II. Canonical equations and quantization. Rev. Modern Phys. 1949, 21, 48–487. [Google Scholar] [CrossRef]
- Dirac, P.A.M. Generlized Hamiltonian dynamics. Canad. J. Math. 1950, 2, 129–148. [Google Scholar] [CrossRef]
- Scott, A.C. Emergence and Dynamics of Coherent Structures; Nonlinear Science; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Li, J.; Xia, T. A Riemann-Hilbert Approach to the Kundu-nonlinear Schrdinger equation and its multi-component generalization. J. Math. Anal. Appl. 2021, 500, 125109. [Google Scholar] [CrossRef]
- Li, J.; Xia, T.; Guo, H. Long-time asymptotics for the nonlocal Kundu-nonlinear Schrödinger equation by the nonlinear steepest descent method. Theor. Math. Phys. 2022, 213, 1706–1726. [Google Scholar] [CrossRef]
- Kudryashov, N.A. A generalized model for description of propagation pulses in optical fiber. Optik 2019, 189, 42–52. [Google Scholar] [CrossRef]
- Marburger, J.H.; Dawes, E. Dynamical formation of a small-scale filament. Phys. Rev. Lett. 1968, 21, 556–558. [Google Scholar] [CrossRef]
- Gustafson, T.K.; Kelley, P.L.; Chiao, R.Y.; Brewer, R.G. Self-trapping in media with saturation of the nonlinear index. Appl. Phys. Lett. 1968, 12, 165–168. [Google Scholar] [CrossRef]
- Reichert, J.D.; Wagner, W.G. Self-trapped Optical Beams in Liquids. IEEE J. Quantum Electron. 1968, 4, 221–225. [Google Scholar] [CrossRef]
- Krolikowski, W.; Luther-Davies, B. Analytic solution for soliton propagation in a nonlinear saturable medium. Opt. Lett. 1992, 17, 1414–1416. [Google Scholar] [CrossRef] [PubMed]
- Krolikowski, W.; Luther-Davies, B. Dark optical solitons in saturable nonlinear media. Opt. Lett. 1993, 18, 188–190. [Google Scholar] [CrossRef] [PubMed]
- Kudryashov, N.A. Bright and dark solitons in a nonlinear saturable medium. Phys. Lett. Sect. A Gen. At. Solid State Phys. 2022, 427, 127913. [Google Scholar] [CrossRef]
- Abdulwahhab, M.A. Classification of conserved vectors of the Triki–Biswas equation describing monomode optical fibres. Optik 2021, 227, 165965. [Google Scholar] [CrossRef]
- Biswas, A.; Kara, A.H.; Ullah, M.Z.; Zhou, Q.; Triki, H.; Belic, M. Conservation laws for cubic–quartic optical solitons in Kerr and power law media. Optik 2017, 145, 650–654. [Google Scholar] [CrossRef]
- Triki, H.; Kara, A.H.; Biswas, A.; Moshokoa, S.P.; Belic, M. Optical solitons and conservation laws with anti-cubic nonlinearity. Optik 2016, 127, 12056–12062. [Google Scholar] [CrossRef]
- Tang, M.-Y.; Wang, M.-Y. The chirped wave propagation in modified cubic–quintic complex Ginzburg–Landau equation with parabolic law. Optik 2023, 275, 170547. [Google Scholar] [CrossRef]
- Triki, H.; Biswas, A.; Moshokoa, S.P.; Belic, M. Optical solitons and conservation laws with quadratic-cubic nonlinearity. Optik 2017, 128, 63–70. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Implicit solitary waves for one of the generalized nonlinear schrodinger equations. Mathematics 2021, 9, 3024. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Optical Solitons of the Generalized Nonlinear Schrodinger Equation with Kerr Nonlinearity and Dispersion of Unrestricted Order. Mathematics 2022, 10, 3409. [Google Scholar] [CrossRef]
- Ekici, M. Stationary optical solitons with Kudryashov’s quintuple power law nonlinearity by extended Jacobi’s elliptic function expansion. J. Nonlinear Opt. Phys. Mater. 2023, 32, 2350008. [Google Scholar] [CrossRef]
- Gonzalez-Gaxiola, O.; Biswas, A.; Ekici, M.; Khan, S. Highly dispersive optical solitons with quadratic–cubic law of refractive index by the variational iteration method. J. Opt. 2022, 51, 29–36. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Mathematical model of propagation pulse in optical fiber with power nonlinearities. Optik 2020, 212, 164750. [Google Scholar] [CrossRef]
- Hu, X.; Yin, Z. A study of the pulse propagation with a generalized Kudryashov equation. Chaos Solitons Fractals 2022, 161, 112379. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Highly dispersive solitary wave solutions of perturbed nonlinear Schrodinger equations. Appl. Math. Comput. 2020, 371, 124972. [Google Scholar] [CrossRef]
- Ozisik, M.; Secer, A.; Bayram, M.; Cinar, M.; Ozdemir, N.; Esen, H.; Onder, I. Investigation of optical soliton solutions of higher-order nonlinear Schrodinger equation having Kudryashov nonlinear refractive index. Optik 2023, 274, 170548. [Google Scholar] [CrossRef]
- Saha, N.; Roy, B. Higher order effects on constant intensity waves of nonlinear Schrodinger equation with PT symmetric potential. Optik 2021, 226, 165817. [Google Scholar] [CrossRef]
- Chen, J.; Luan, Z.; Zhou, Q.; Alzahrani, A.K.; Biswas, A.; Liu, W. Periodic soliton interactions for higher-order nonlinear Schrodinger equation in optical fibers. Nonlinear Dyn. 2020, 100, 2817–2821. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kudryashov, N.A. Hamiltonians of the Generalized Nonlinear Schrödinger Equations. Mathematics 2023, 11, 2304. https://doi.org/10.3390/math11102304
Kudryashov NA. Hamiltonians of the Generalized Nonlinear Schrödinger Equations. Mathematics. 2023; 11(10):2304. https://doi.org/10.3390/math11102304
Chicago/Turabian StyleKudryashov, Nikolay A. 2023. "Hamiltonians of the Generalized Nonlinear Schrödinger Equations" Mathematics 11, no. 10: 2304. https://doi.org/10.3390/math11102304
APA StyleKudryashov, N. A. (2023). Hamiltonians of the Generalized Nonlinear Schrödinger Equations. Mathematics, 11(10), 2304. https://doi.org/10.3390/math11102304