Data-Driven Optimized Artificial Neural Network Technique for Prediction of Flyrock Induced by Boulder Blasting
Abstract
:1. Introduction
2. Methods and Materials
2.1. Jellyfish Search
2.1.1. Population Initialization
2.1.2. Ocean Current
2.1.3. Jellyfish Swarm
2.1.4. Time Control Mechanism
2.2. Particle Swarm Optimization
2.3. Artificial Neural Network
2.4. Hybrid System
3. Case Study and Data Analysis
4. Model Development
4.1. ANN
4.2. Hybrid Models
4.3. PSO–ANN
4.4. JSA–ANN
5. Results and Discussion
6. Sensitivity Analysis
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lundborg, N.; Persson, A.; Ladegaard-Pedersen, A.; Holmberg, R. Keeping the lid on flyrock in open-pit blasting. Eng. Min. J. 1975, 176, 95–100. [Google Scholar]
- Gupta, R.N.; Bagchi, A.; Singh, B. Optimising drilling and blasting parameters to improve blasting efficiency. In Status Report; CBIP Rock Mech: New Delhi, India, 1988; pp. 185–206. [Google Scholar]
- Hosseini, S.; Mousavi, A.; Monjezi, M.; Khandelwal, M. Mine-to-crusher policy: Planning of mine blasting patterns for environmentally friendly and optimum fragmentation using Monte Carlo simulation-based multi-objective grey wolf optimization approach. Resour. Policy 2022, 79, 103087. [Google Scholar] [CrossRef]
- Hosseini, S.; Pourmirzaee, R.; Armaghani, D.J.; Sabri Sabri, M.M. Prediction of ground vibration due to mine blasting in a surface lead–zinc mine using machine learning ensemble techniques. Sci. Rep. 2023, 13, 6591. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.; Poormirzaee, R.; Hajihassani, M. An uncertainty hybrid model for risk assessment and prediction of blast-induced rock mass fragmentation. Int. J. Rock Mech. Min. Sci. 2022, 160, 105250. [Google Scholar] [CrossRef]
- Hosseini, S.; Poormirzaee, R.; Hajihassani, M.; Kalatehjari, R. An ANN-Fuzzy Cognitive Map-Based Z-Number Theory to Predict Flyrock Induced by Blasting in Open-Pit Mines. Rock Mech. Rock Eng. 2022, 55, 4373–4390. [Google Scholar] [CrossRef]
- Rezaei, M.; Monjezi, M.; Yazdian Varjani, A. Development of a fuzzy model to predict flyrock in surface mining. Saf. Sci. 2011, 49, 298–305. [Google Scholar] [CrossRef]
- Bahrami, A.; Monjezi, M.; Goshtasbi, K.; Ghazvinian, A. Prediction of rock fragmentation due to blasting using artificial neural network. Eng. Comput. 2011, 27, 177–181. [Google Scholar] [CrossRef]
- Monjezi, M.; Bahrami, A.; Varjani, A.Y.; Sayadi, A.R. Prediction and controlling of flyrock in blasting operation using artificial neural network. Arab. J. Geosci. 2011, 4, 421–425. [Google Scholar] [CrossRef]
- Amini, H.; Gholami, R.; Monjezi, M.; Torabi, S.R.; Zadhesh, J. Evaluation of flyrock phenomenon due to blasting operation by support vector machine. Neural Comput. Appl. 2012, 21, 2077–2085. [Google Scholar] [CrossRef]
- Zangoei, A.; Monjezi, M.; Armaghani, D.J.; Mehrdanesh, A.; Ahmadian, S. Prediction and optimization of flyrock and oversize boulder induced by mine blasting using artificial intelligence techniques. Environ. Earth Sci. 2022, 81, 359. [Google Scholar] [CrossRef]
- Mohamad, E.T.; Armaghani, D.J.; Hajihassani, M.; Faizi, K.; Marto, A. A simulation approach to predict blasting-induced flyrock and size of thrown rocks. Electron. J. Geotech. Eng. 2013, 18, 365–374. [Google Scholar]
- Trivedi, R.; Singh, T.N.; Raina, A.K. Prediction of blast-induced flyrock in Indian limestone mines using neural networks. J. Rock Mech. Geotech. Eng. 2014, 6, 447–454. [Google Scholar] [CrossRef]
- Ghasemi, E.; Amini, H.; Ataei, M.; Khalokakaei, R. Application of artificial intelligence techniques for predicting the flyrock distance caused by blasting operation. Arab. J. Geosci. 2014, 7, 193–202. [Google Scholar] [CrossRef]
- McKenzie, C.K. Flyrock range and fragment size prediction. In Proceedings of the 35th Annual Conference on Explosives and Blasting Technique, Denver, CO, USA, 8–11 February 2009; International Society of Explosives Engineers: Cleveland, OH, USA, 2009; Volume 2. [Google Scholar]
- Ikram, R.M.A.; Ewees, A.A.; Parmar, K.S.; Yaseen, Z.M.; Shahid, S.; Kisi, O. The viability of extended marine predators algorithm-based artificial neural networks for streamflow prediction. Appl. Soft. Comput. 2022, 131, 109739. [Google Scholar] [CrossRef]
- Ikram, R.M.A.; Dai, H.-L.; Al-Bahrani, M.; Mamlooki, M. Prediction of the FRP Reinforced Concrete Beam shear capacity by using ELM-CRFOA. Measurement 2022, 205, 112230. [Google Scholar] [CrossRef]
- Ikram, R.M.A.; Jaafari, A.; Milan, S.G.; Kisi, O.; Heddam, S.; Zounemat-Kermani, M. Hybridized Adaptive Neuro-Fuzzy Inference System with Metaheuristic Algorithms for Modeling Monthly Pan Evaporation. Water 2022, 14, 3549. [Google Scholar] [CrossRef]
- Ikram, R.M.A.; Goliatt, L.; Kisi, O.; Trajkovic, S.; Shahid, S. Covariance matrix adaptation evolution strategy for improving machine learning approaches in streamflow prediction. Mathematics 2022, 10, 2971. [Google Scholar] [CrossRef]
- Ikram, R.M.A.; Dai, H.-L.; Ewees, A.A.; Shiri, J.; Kisi, O.; Zounemat-Kermani, M. Application of improved version of multi verse optimizer algorithm for modeling solar radiation. Energy Rep. 2022, 8, 12063–12080. [Google Scholar] [CrossRef]
- Adnan, R.M.; Dai, H.-L.; Mostafa, R.R.; Islam, A.R.M.T.; Kisi, O.; Heddam, S.; Zounemat-Kermani, M. Modelling groundwater level fluctuations by ELM merged advanced metaheuristic algorithms using hydroclimatic data. Geocarto Int. 2023, 38, 2158951. [Google Scholar] [CrossRef]
- He, B.; Armaghani, D.J.; Lai, S.H. Assessment of tunnel blasting-induced overbreak: A novel metaheuristic-based random forest approach. Tunn. Undergr. Sp. Technol. 2023, 133, 104979. [Google Scholar] [CrossRef]
- Ghanizadeh, A.R.; Ghanizadeh, A.; Asteris, P.G.; Fakharian, P.; Armaghani, D.J. Developing bearing capacity model for geogrid-reinforced stone columns improved soft clay utilizing MARS-EBS hybrid method. Transp. Geotech. 2023, 38, 100906. [Google Scholar] [CrossRef]
- Yang, H.; Wang, Z.; Song, K. A new hybrid grey wolf optimizer-feature weighted-multiple kernel-support vector regression technique to predict TBM performance. Eng. Comput. 2022, 38, 2469–2485. [Google Scholar] [CrossRef]
- Yang, H.; Song, K.; Zhou, J. Automated Recognition Model of Geomechanical Information Based on Operational Data of Tunneling Boring Machines. Rock Mech. Rock Eng. 2022, 55, 1499–1516. [Google Scholar] [CrossRef]
- Lundborg, N. The Probability of Flyrock; Swedish Detonic Research Foundation: Stockholm, Sweden, 1981. [Google Scholar]
- Richard, A.B.; Moore, A.J. Golden Pike Cut Back Fly Rock Control and Calibration of a Predictive Model; Terrock Consulting Engineers Report; Kalgoorlie Consolidated Gold Mines: Subiaco, Australia, 2005; p. 37. [Google Scholar]
- Monjezi, M.; Bahrami, A.; Yazdian Varjani, A. Simultaneous prediction of fragmentation and flyrock in blasting operation using artificial neural networks. Int. J. Rock Mech. Min. Sci. 2010, 47, 476–480. [Google Scholar] [CrossRef]
- Monjezi, M.; Khoshalan, H.A.; Varjani, A.Y. Prediction of flyrock and backbreak in open pit blasting operation: A neuro-genetic approach. Arab. J. Geosci. 2012, 5, 441–448. [Google Scholar] [CrossRef]
- Ghasemi, E.; Sari, M.; Ataei, M. Development of an empirical model for predicting the effects of controllable blasting parameters on flyrock distance in surface mines. Int. J. Rock Mech. Min. Sci. 2012, 52, 163–170. [Google Scholar] [CrossRef]
- Monjezi, M.; Mehrdanesh, A.; Malek, A.; Khandelwal, M. Evaluation of effect of blast design parameters on flyrock using artificial neural networks. Neural Comput. Appl. 2013, 23, 349–356. [Google Scholar] [CrossRef]
- Khandelwal, M.; Monjezi, M. Prediction of backbreak in open-pit blasting operations using the machine learning method. Rock Mech. Rock Eng. 2013, 46, 389–396. [Google Scholar] [CrossRef]
- Trivedi, R.; Singh, T.N.; Gupta, N. Prediction of blast-induced flyrock in opencast mines using ANN and ANFIS. Geotech. Geol. Eng. 2015, 33, 875–891. [Google Scholar] [CrossRef]
- Raina, A.K.; Murthy, V.M.S.R. Prediction of Flyrock Distance in Open Pit Blasting Using Surface Response Analysis. Geotech. Geol. Eng. 2016, 34, 15–28. [Google Scholar] [CrossRef]
- Trivedi, R.; Singh, T.N.; Raina, A.K. Simultaneous prediction of blast-induced flyrock and fragmentation in opencast limestone mines using back propagation neural network. Int. J. Min. Miner. Eng. 2016, 7, 237–252. [Google Scholar] [CrossRef]
- Rad, H.N.; Hasanipanah, M.; Rezaei, M.; Eghlim, A.L. Developing a least squares support vector machine for estimating the blast-induced flyrock. Eng. Comput. 2018, 34, 709–717. [Google Scholar] [CrossRef]
- Hudaverdi, T.; Akyildiz, O. A new classification approach for prediction of flyrock throw in surface mines. Bull. Eng. Geol. Environ. 2019, 78, 177–187. [Google Scholar] [CrossRef]
- Lu, X.; Hasanipanah, M.; Brindhadevi, K.; Bakhshandeh Amnieh, H.; Khalafi, S. ORELM: A Novel Machine Learning Approach for Prediction of Flyrock in Mine Blasting. Nat. Resour. Res. 2020, 29, 641–654. [Google Scholar] [CrossRef]
- Hasanipanah, M.; Bakhshandeh Amnieh, H.; Amnieh, H.B. A fuzzy rule-based approach to address uncertainty in risk assessment and prediction of blast-induced Flyrock in a quarry. Nat. Resour. Res. 2020, 29, 669–689. [Google Scholar] [CrossRef]
- Lawal, A.I.; Ojo, O.J.; Kim, M.; Kwon, S. Determination of blast-induced flyrock using a drone technology: A bibliometric overview with practical soft computing implementation. Arab. J. Geosci. 2022, 15, 1581. [Google Scholar] [CrossRef]
- Ye, J.; He, X. A novel hybrid of ANFIS-based models using optimisation approaches to predict mine blast-induced flyrock. Int. J. Environ. Sci. Technol. 2023, 20, 3673–3686. [Google Scholar] [CrossRef]
- Yari, M.; Armaghani, D.J.; Maraveas, C.; Ejlali, A.N.; Mohamad, E.T.; Asteris, P.G. Several Tree-Based Solutions for Predicting Flyrock Distance Due to Mine Blasting. Appl. Sci. 2023, 13, 1345. [Google Scholar] [CrossRef]
- Chou, J.-S.; Truong, D.-N. A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean. Appl. Math. Comput. 2021, 389, 125535. [Google Scholar] [CrossRef]
- Chou, J.S.; Tjandrakusuma, S.; Liu, C.Y. Jellyfish Search-Optimized Deep Learning for Compressive Strength Prediction in Images of Ready-Mixed Concrete. Comput. Intell. Neurosci. 2022, 2022, 9541115. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R.C. Discrete binary version of the particle swarm algorithm. In Proceedings of the 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, Orlando, FL, USA, 12–15 October 1997; IEEE: New York, NY, USA, 1997. [Google Scholar] [CrossRef]
- Bakhtavar, E.; Hosseini, S.; Hewage, K.; Sadiq, R. Green blasting policy: Simultaneous forecast of vertical and horizontal distribution of dust emissions using artificial causality-weighted neural network. J. Clean. Prod. 2021, 283, 124562. [Google Scholar] [CrossRef]
- Hosseini, S.; Monjezi, M.; Bakhtavar, E.; Mousavi, A. Prediction of Dust Emission Due to Open Pit Mine Blasting Using a Hybrid Artificial Neural Network. Nat. Resour. Res. 2021, 30, 4773–4788. [Google Scholar] [CrossRef]
- Hosseini, S.; Monjezi, M.; Bakhtavar, E. Minimization of blast-induced dust emission using gene-expression programming and grasshopper optimization algorithm: A smart mining solution based on blasting plan optimization. Clean Technol. Environ. Policy 2022, 24, 2313–2328. [Google Scholar] [CrossRef]
- Zorlu, K.; Gokceoglu, C.; Ocakoglu, F.; Nefeslioglu, H.A.; Acikalin, S. Prediction of uniaxial compressive strength of sandstones using petrography-based models. Eng. Geol. 2008, 96, 141–158. [Google Scholar] [CrossRef]
- Barkhordari, M.S.; Armaghani, D.J.; Fakharian, P. Ensemble machine learning models for prediction of flyrock due to quarry blasting. Int. J. Environ. Sci. Technol. 2022, 19, 8661–8676. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Q. A hierarchical analysis for rock engineering using artificial neural networks. Rock Mech. Rock Eng. 1997, 30, 207–222. [Google Scholar] [CrossRef]
Reference | Year | Inputs | AI Algorithm |
---|---|---|---|
[1] | 1975 | HD | Empirical |
[26] | 1981 | HD, SC | Empirical |
[2] | 1988 | ST/B | Empirical |
[27] | 2005 | B, ST, HD | Empirical |
[15] | 2009 | HD, Fs | Empirical |
[28] | 2010 | HD, ST, BS, SD, PF, Qmax, N, RD | ANN |
[7] | 2011 | B, S, HD, ST, SD, PF, Qmax, RD | FIS, SM |
[8] | 2011 | B, S, HD, ST, PF, Qmax, BI, RMR | ANN |
[9] | 2011 | d, B, HD, ST, BS, SD, PF, Qmax, BI | ANN |
[29] | 2012 | B, S, HD, ST, SD, PF, Qmax, RMR | ANN-GA |
[10] | 2012 | PF, HD, SD, S, d, B, ST | ANN, SVM |
[30] | 2012 | B, S, ST, HD, HD, SC, Q | Empirical |
[31] | 2013 | HD, S, B, d, Qmax | ANN |
[32] | 2013 | HD, S, B, ST, PF, SD | SVM |
[13] | 2014 | B, S, CPM, Q, σc, RQD | MVRA |
[14] | 2014 | PF, S, HD, ST, B, Qmax | FIS, ANN |
[33] | 2015 | d, B, S, HD, Q, CPM, σc, RQD | ANN, ANFIS |
[34] | 2016 | BDF, EDF, RMR | Empirical |
[35] | 2016 | B, S, CPM, PF, σc, RQD | MVRA, BPNN |
[36] | 2018 | B/S, H/B, SD, PF, Qmax RD | LS-SVM, SVR |
[37] | 2019 | B/d, S/B, ST/B, H/B, PF, Xb | MDA |
[38] | 2020 | B, S, ST, PF RD | ELM |
[39] | 2020 | B, S/B, ST/B, H/B, d, B/d, PF, Qmax, VoD RMR, BI | FRES |
[6] | 2022 | B, S, ST, PF, Q | Z-FCM-ANN |
[3] | 2022 | N, HD, B, S, ST, BRH, PF, Q | ANN |
[40] | 2022 | ST, Q, PF | ANN |
[41] | 2022 | d, HD, S, PF, B/S, ST, Qmax | ANFIS, HGSO-ANFIS |
[42] | 2023 | HD, S, B, ST, PF | DT, XGBoost, AdaBoost |
Input | Output | ||||||
---|---|---|---|---|---|---|---|
Parameters | Hole Depth | Burden | Hole Angle | Charge Weight | Stemming | Powder Factor | Flyrock Distance |
Sign | HD | B | HA | CW | St | PF | Flyrock |
Unit | (cm) | (cm) | (°) | (kg) | (cm) | (kg/m3) | (m) |
Min | 71 | 57 | 22 | 2.7 | 31 | 0.6 | 157 |
Average | 86.91 | 77.18 | 27.46 | 3.41 | 39.80 | 0.79 | 227.66 |
Max | 101 | 96 | 33 | 4.3 | 49 | 1.01 | 300 |
Standard Deviation | 7.11 | 10.63 | 2.95 | 0.40 | 5.41 | 0.10 | 37.54 |
Model No. | Training | Testing | Training Rates | Testing Rates | Total Rate | Rank | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | VAF | R2 | RMSE | VAF | R2 | RMSE | VAF | R2 | RMSE | VAF | |||
1 | 0.880 | 13.106 | 65.783 | 0.848 | 11.256 | 83.126 | 1 | 1 | 1 | 1 | 1 | 1 | 6 | 10 |
2 | 0.938 | 8.194 | 98.110 | 0.931 | 7.509 | 92.166 | 7 | 9 | 9 | 9 | 9 | 9 | 52 | 2 |
3 | 0.916 | 10.542 | 97.858 | 0.894 | 10.303 | 89.412 | 3 | 2 | 8 | 6 | 2 | 8 | 29 | 6 |
4 | 0.940 | 8.235 | 93.983 | 0.879 | 9.821 | 86.232 | 9 | 8 | 4 | 3 | 5 | 4 | 33 | 5 |
5 | 0.957 | 7.392 | 99.472 | 0.945 | 7.473 | 93.961 | 10 | 10 | 10 | 10 | 10 | 10 | 60 | 1 |
6 | 0.917 | 9.934 | 91.989 | 0.864 | 10.027 | 85.595 | 4 | 4 | 3 | 2 | 4 | 3 | 20 | 9 |
7 | 0.905 | 10.215 | 93.983 | 0.882 | 9.055 | 88.025 | 2 | 3 | 4 | 4 | 7 | 6 | 26 | 8 |
8 | 0.919 | 9.559 | 96.439 | 0.909 | 8.771 | 88.772 | 5 | 6 | 7 | 7 | 8 | 7 | 40 | 3 |
9 | 0.939 | 8.544 | 91.989 | 0.885 | 10.130 | 85.588 | 8 | 7 | 2 | 5 | 3 | 2 | 27 | 7 |
10 | 0.928 | 9.611 | 93.983 | 0.928 | 9.699 | 87.771 | 6 | 5 | 4 | 8 | 6 | 5 | 34 | 4 |
Model No. | Swarm Size | Training | Testing | Training Rates | Testing Rates | Total Rate | Rank | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | VAF | R2 | RMSE | VAF | R2 | RMSE | VAF | R2 | RMSE | VAF | ||||
1 | 50 | 0.956 | 7.389 | 97.116 | 0.952 | 6.164 | 94.832 | 1 | 3 | 2 | 9 | 9 | 10 | 34 | 6 |
2 | 100 | 0.961 | 7.184 | 95.692 | 0.946 | 6.457 | 93.871 | 6 | 6 | 1 | 3 | 5 | 4 | 25 | 9 |
3 | 150 | 0.964 | 6.963 | 99.430 | 0.942 | 6.906 | 93.155 | 7 | 8 | 5 | 1 | 3 | 2 | 26 | 8 |
4 | 200 | 0.972 | 5.533 | 99.680 | 0.954 | 7.751 | 93.608 | 10 | 10 | 7 | 10 | 1 | 3 | 41 | 1 |
5 | 250 | 0.957 | 7.204 | 99.430 | 0.944 | 7.066 | 92.908 | 3 | 4 | 5 | 2 | 2 | 1 | 17 | 10 |
6 | 300 | 0.960 | 7.192 | 99.858 | 0.950 | 6.385 | 94.059 | 5 | 5 | 8 | 8 | 7 | 5 | 38 | 3 |
7 | 350 | 0.957 | 7.178 | 98.255 | 0.949 | 6.325 | 94.287 | 2 | 7 | 3 | 7 | 8 | 7 | 34 | 6 |
8 | 400 | 0.957 | 7.672 | 100.000 | 0.948 | 6.076 | 94.656 | 4 | 1 | 10 | 5 | 10 | 9 | 39 | 2 |
9 | 450 | 0.965 | 6.587 | 98.255 | 0.949 | 6.427 | 94.175 | 8 | 9 | 3 | 6 | 6 | 6 | 38 | 3 |
10 | 500 | 0.966 | 7.442 | 99.964 | 0.947 | 6.469 | 94.628 | 9 | 2 | 9 | 4 | 4 | 8 | 36 | 5 |
Model No. | Swarm Size | Training | Testing | Training Rates | Testing Rates | Total Rate | Rank | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | VAF | R2 | RMSE | VAF | R2 | RMSE | VAF | R2 | RMSE | VAF | ||||
1 | 25 | 0.988 | 3.788 | 99.964 | 0.990 | 4.368 | 98.706 | 1 | 1 | 8 | 9 | 2 | 9 | 30 | 6 |
2 | 50 | 0.988 | 3.629 | 98.718 | 0.971 | 4.197 | 96.525 | 2 | 2 | 4 | 2 | 4 | 3 | 17 | 9 |
3 | 75 | 0.991 | 3.425 | 97.721 | 0.978 | 4.261 | 96.460 | 6 | 4 | 3 | 5 | 3 | 2 | 23 | 8 |
4 | 100 | 0.990 | 3.299 | 99.110 | 0.979 | 3.573 | 97.597 | 4 | 5 | 5 | 6 | 6 | 5 | 31 | 5 |
5 | 125 | 0.990 | 3.214 | 99.430 | 0.976 | 3.453 | 97.649 | 5 | 6 | 7 | 4 | 7 | 6 | 35 | 4 |
6 | 150 | 0.989 | 3.587 | 97.116 | 0.964 | 4.796 | 96.313 | 3 | 3 | 2 | 1 | 1 | 1 | 11 | 10 |
7 | 175 | 0.995 | 2.791 | 99.964 | 0.992 | 3.282 | 98.664 | 9 | 9 | 8 | 10 | 8 | 8 | 52 | 2 |
8 | 200 | 0.995 | 2.449 | 100.000 | 0.990 | 2.602 | 98.832 | 10 | 10 | 10 | 8 | 10 | 10 | 58 | 1 |
9 | 225 | 0.992 | 3.095 | 99.110 | 0.983 | 3.101 | 98.300 | 8 | 8 | 5 | 7 | 9 | 7 | 44 | 3 |
10 | 250 | 0.992 | 3.150 | 96.439 | 0.975 | 3.700 | 97.298 | 7 | 7 | 1 | 3 | 5 | 4 | 27 | 7 |
Developed Model | Train | Test | Train Rating | Test Rating | Total Rate | Rank | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | VAF | R2 | RMSE | VAF | R2 | RMSE | VAF | R2 | RMSE | VAF | |||
ANN | 0.957 | 7.392 | 91.989 | 0.945 | 7.473 | 93.961 | 1 | 1 | 1 | 1 | 2 | 2 | 8 | 3 |
PSO–ANN | 0.972 | 5.533 | 99.680 | 0.954 | 7.751 | 93.608 | 2 | 2 | 2 | 2 | 1 | 1 | 10 | 2 |
JSA–ANN | 0.995 | 2.791 | 99.964 | 0.989 | 2.896 | 98.872 | 3 | 3 | 3 | 3 | 3 | 3 | 18 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Hosseini, S.; Jahed Armaghani, D.; Tonnizam Mohamad, E. Data-Driven Optimized Artificial Neural Network Technique for Prediction of Flyrock Induced by Boulder Blasting. Mathematics 2023, 11, 2358. https://doi.org/10.3390/math11102358
Wang X, Hosseini S, Jahed Armaghani D, Tonnizam Mohamad E. Data-Driven Optimized Artificial Neural Network Technique for Prediction of Flyrock Induced by Boulder Blasting. Mathematics. 2023; 11(10):2358. https://doi.org/10.3390/math11102358
Chicago/Turabian StyleWang, Xianan, Shahab Hosseini, Danial Jahed Armaghani, and Edy Tonnizam Mohamad. 2023. "Data-Driven Optimized Artificial Neural Network Technique for Prediction of Flyrock Induced by Boulder Blasting" Mathematics 11, no. 10: 2358. https://doi.org/10.3390/math11102358
APA StyleWang, X., Hosseini, S., Jahed Armaghani, D., & Tonnizam Mohamad, E. (2023). Data-Driven Optimized Artificial Neural Network Technique for Prediction of Flyrock Induced by Boulder Blasting. Mathematics, 11(10), 2358. https://doi.org/10.3390/math11102358