Parameter Estimation for Nonlinear Diffusion Problems by the Constrained Homotopy Method
Abstract
:1. Introduction
2. Mathematical Model
3. Parameter Estimation Framework
4. Inversion Method
4.1. Basic Iterative Method
4.2. Homotopy Method
4.3. Global Convergence of Homotopy Method
5. Numerical Experiments and Results
- (1)
- The constrained homotopy method has global convergence, fast convergence speed, and good stability;
- (2)
- Both the constrained homotopy method and the homotopy method have wider region of convergence than the constrained method;
- (3)
- The constrained homotopy method has a stronger noise suppression ability than the homotopy method.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nilssen, T.K.; Mannseth, T.; Tai, X.C. Permeability estimation with the augmented Lagrangian method for a nonlinear diffusion equation. Comput. Geosci. 2003, 7, 27–47. [Google Scholar] [CrossRef]
- Zeki, M.; Tinaztepe, R.; Tatar, S.; Ulusoy, S.; Al-Hajj, R. Determination of a nonlinear coefficient in a time-fractional diffusion equation. Fractal Fract. 2023, 7, 371. [Google Scholar] [CrossRef]
- Guerngar, N.; Nane, E.; Tinaztepe, R.; Ulusoy, S.; Van Wyk, H.W. Simultaneous inversion for the fractional exponents in the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 2021, 24, 818–847. [Google Scholar] [CrossRef]
- Brociek, R.; Wajda, A.; Słota, D. Inverse problem for a two-dimensional anomalous diffusion equation with a fractional derivative of the Riemann–Liouville type. Energies 2021, 14, 3082. [Google Scholar] [CrossRef]
- Brociek, R.; Wajda, A.; Słota, D. Comparison of heuristic algorithms in identification of parameters of anomalous diffusion model based on measurements from sensors. Sensors 2023, 23, 1722. [Google Scholar] [CrossRef]
- Brociek, R.; Chmielowska, A.; Słota, D. Parameter identification in the two-dimensional Riesz space fractional diffusion equation. Fractal Fract. 2020, 4, 39. [Google Scholar] [CrossRef]
- Mittal, G.; Giri, A.K. Convergence rates for iteratively regularized Gauss–Newton method subject to stability constraints. J. Comput. Appl. Math. 2022, 400, 113744. [Google Scholar] [CrossRef]
- Al-Mahdawi, H.K.I.; Alkattan, H.; Abotaleb, M.; Kadi, A.; El-kenawy, E.-S.M. Updating the Landweber iteration method for solving inverse problems. Mathematics 2022, 10, 2798. [Google Scholar] [CrossRef]
- Bergou, E.H.; Diouane, Y.; Kungurtsev, V. Convergence and complexity analysis of a Levenberg–Marquardt algorithm for inverse problems. J. Optim. Theory Appl. 2020, 185, 927–944. [Google Scholar] [CrossRef]
- Qian, E.; Grepl, M.; Veroy, K.; Willcox, K. A certified trust region reduced basis approach to PDE-constrained optimization. SIAM J. Sci. Comput. 2017, 39, S434–S460. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Schwab, J.; Antholzer, S.; Haltmeier, M. NETT: Solving inverse problems with deep neural networks. Inverse Probl. 2020, 36, 065005. [Google Scholar] [CrossRef] [Green Version]
- Bochud, N.; Vallet, Q.; Bala, Y.; Follet, H.; Minonzio, J.G.; Laugier, P. Genetic algorithms-based inversion of multimode guided waves for cortical bone characterization. Phys. Med. Biol. 2016, 61, 6953. [Google Scholar] [CrossRef] [Green Version]
- Tavares, R.S.; Sato, A.K.; Martins, T.C.; Lima, R.G.; Tsuzuki, M.S.G. GPU acceleration of absolute EIT image reconstruction using simulated annealing. Biomed. Signal Process. 2019, 52, 445–455. [Google Scholar] [CrossRef]
- Brociek, R.; Wajda, A.; Błasik, M.; Słota, D. An application of the homotopy analysis method for the time- or space-fractional heat equation. Fractal Fract. 2023, 7, 224. [Google Scholar] [CrossRef]
- Yasmin, H. Application of Aboodh homotopy perturbation transform method for fractional-order convection-reaction-diffusion equation within Caputo and Atangana-Baleanu operators. Symmetry 2023, 15, 453. [Google Scholar] [CrossRef]
- Yasmin, H.; Alshehry, A.S.; Saeed, A.M.; Shah, R.; Nonlaopon, K. Application of the q-homotopy analysis transform method to fractional-order Kolmogorov and Rosenau-Hyman models within the Atangana-Baleanu operator. Symmetry 2023, 15, 671. [Google Scholar] [CrossRef]
- Noeiaghdam, S.; Araghi, M.A.F.; Sidorov, D. Dynamical strategy on homotopy perturbation method for solving second kind integral equations using the CESTAC method. J. Comput. Appl. Math. 2022, 411, 114226. [Google Scholar] [CrossRef]
- Watson, L.T. Globally convergent homotopy methods: A tutorial. Appl. Math. Comput. 1989, 31, 369–396. [Google Scholar]
- Jegen, M.D.; Everett, M.E.; Schultz, A. Using homotopy to invert geophysical data. Geophysics 2001, 66, 1749–1760. [Google Scholar] [CrossRef]
- Ping, P.; Chu, R.; Zhang, Y.; Zeng, Q. A homotopy inversion method for Rayleigh wave dispersion data. J. Appl. Geophys. 2023, 209, 104914. [Google Scholar] [CrossRef]
- Ghanati, R.; Müller-Petke, M. A homotopy continuation inversion of geoelectrical sounding data. J. Appl. Geophys. 2021, 191, 104356. [Google Scholar] [CrossRef]
- Słota, D.; Chmielowska, A.; Brociek, R.; Szczygieł, M. Application of the homotopy method for fractional inverse Stefan problem. Energies 2020, 13, 5474. [Google Scholar] [CrossRef]
- Słota, D. Homotopy perturbation method for solving the two-phase inverse Stefan problem. Numer. Heat Transf. A-Appl. 2011, 59, 755–768. [Google Scholar] [CrossRef]
- Hetmaniok, E.; Słota, D.; Wituła, R.; Zielonka, A. Solution of the one-phase inverse Stefan problem by using the homotopy analysis method. Appl. Math. Model. 2015, 39, 6793–6805. [Google Scholar] [CrossRef]
- Hu, J.L.; Hirasawa, K.; Kumamaru, K. A homotopy approach to improving PEM identification of ARMAX models. Automatica 2001, 37, 1323–1334. [Google Scholar] [CrossRef]
- Zhang, W.; Tan, C.; Dong, F. Non-linear reconstruction for ERT inverse problem based on homotopy algorithm. IEEE Sens. J. 2023, 23, 10404–10412. [Google Scholar] [CrossRef]
- Biswal, U.; Chakraverty, S.; Ojha, B.K. Application of homotopy perturbation method in inverse analysis of Jeffery-Hamel flow problem. Eur. J. Mech. B Fluids 2021, 86, 107–112. [Google Scholar] [CrossRef]
- Hetmaniok, E.; Nowak, I.; Słota, D.; Wituła, R. Application of the homotopy perturbation method for the solution of inverse heat conduction problem. Int. Commun. Heat Mass 2012, 39, 30–35. [Google Scholar] [CrossRef]
- Hetmaniok, E.; Nowak, I.; Słota, D.; Wituła, R.; Zielonka, A. Solution of the inverse heat conduction problem with Neumann boundary condition by using the homotopy perturbation method. Therm. Sci. 2013, 17, 643–650. [Google Scholar] [CrossRef]
- Shakeri, F.; Dehghan, M. Inverse problem of diffusion equation by He’s homotopy perturbation method. Phys. Scr. 2007, 75, 551–556. [Google Scholar] [CrossRef]
- Liu, T. A multigrid-homotopy method for nonlinear inverse problems. Comput. Math. Appl. 2020, 79, 1706–1717. [Google Scholar] [CrossRef]
- Liu, T. A wavelet multiscale-homotopy method for the parameter identification problem of partial differential equations. Comput. Math. Appl. 2016, 71, 1519–1523. [Google Scholar] [CrossRef]
- Enting, I.G.; Pearman, G.I. Description of a one-dimensional carbon cycle model calibrated using techniques of constrained inversion. Tellus B 1987, 39, 459–476. [Google Scholar] [CrossRef] [Green Version]
- Rolon, L.; Mohaghegh, S.D.; Ameri, S.; Gaskari, R.; McDaniel, B. Using artificial neural networks to generate synthetic well logs. J. Nat. Gas Sci. Eng. 2009, 1, 118–133. [Google Scholar] [CrossRef]
- Atzberger, C.; Richter, K. Spatially constrained inversion of radiative transfer models for improved LAI mapping from future Sentinel-2 imagery. Remote Sens. Environ. 2012, 120, 208–218. [Google Scholar] [CrossRef]
- Siemon, B.; Auken, E.; Christiansen, A.V. Laterally constrained inversion of helicopter-borne frequency-domain electromagnetic data. J. Appl. Geophys. 2009, 67, 259–268. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, T.; Liu, S. Identification of space-dependent permeability in nonlinear diffusion equation from interior measurements using wavelet multiscale method. Inverse Probl. Sci. Eng. 2014, 22, 259–268. [Google Scholar] [CrossRef]
- Bakushinskii, A.B. The problem of the convergence of the iteratively regularized Gauss–Newton method. Comput. Math. Math. Phys. 1992, 32, 1503–1509. [Google Scholar]
- Bao, G.; Liu, J. Numerical solution of inverse scattering problems with multi-experimental limited aperture data. SIAM J. Sci. Comput. 2003, 25, 1102–1117. [Google Scholar] [CrossRef]
Noise Level | Inversion Method | Relative Error | CPU Run Time (s) |
---|---|---|---|
40 dB | Constrained homotopy method | 0.0835 | 228.9241 |
Homotopy method | 0.0890 | 256.4925 | |
Constrained method | No convergence | No convergence | |
30 dB | Constrained homotopy method | 0.0849 | 230.9774 |
Homotopy method | 0.1062 | 257.6150 | |
Constrained method | No convergence | No convergence | |
20 dB | Constrained homotopy method | 0.0921 | 259.9313 |
Homotopy method | No convergence | No convergence | |
Constrained method | No convergence | No convergence | |
10 dB | Constrained homotopy method | 0.1018 | 284.2159 |
Homotopy method | No convergence | No convergence | |
Constrained method | No convergence | No convergence |
Noise Level | Inversion Method | Relative Error | CPU Run Time (s) |
---|---|---|---|
40 dB | Constrained homotopy method | 0.0633 | 223.1658 |
Homotopy method | 0.0799 | 224.1277 | |
Constrained method | No convergence | No convergence | |
30 dB | Constrained homotopy method | 0.0674 | 224.3204 |
Homotopy method | 0.0805 | 249.1969 | |
Constrained method | No convergence | No convergence | |
20 dB | Constrained homotopy method | 0.0827 | 225.0038 |
Homotopy method | No convergence | No convergence | |
Constrained method | No convergence | No convergence | |
10 dB | Constrained homotopy method | 0.0871 | 251.2146 |
Homotopy method | No convergence | No convergence | |
Constrained method | No convergence | No convergence |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.; Ding, Z.; Yu, J.; Zhang, W. Parameter Estimation for Nonlinear Diffusion Problems by the Constrained Homotopy Method. Mathematics 2023, 11, 2642. https://doi.org/10.3390/math11122642
Liu T, Ding Z, Yu J, Zhang W. Parameter Estimation for Nonlinear Diffusion Problems by the Constrained Homotopy Method. Mathematics. 2023; 11(12):2642. https://doi.org/10.3390/math11122642
Chicago/Turabian StyleLiu, Tao, Zijian Ding, Jiayuan Yu, and Wenwen Zhang. 2023. "Parameter Estimation for Nonlinear Diffusion Problems by the Constrained Homotopy Method" Mathematics 11, no. 12: 2642. https://doi.org/10.3390/math11122642
APA StyleLiu, T., Ding, Z., Yu, J., & Zhang, W. (2023). Parameter Estimation for Nonlinear Diffusion Problems by the Constrained Homotopy Method. Mathematics, 11(12), 2642. https://doi.org/10.3390/math11122642