From Ion Fluxes in Living Cells to Metabolic Power Considerations
Abstract
:1. Introduction
- Healthy cells use the Krebs cycle, based on the oxidation of acetyl-CoA, derived from carbohydrates, fats, and proteins;
- Cancer cells use the Warburg cycle, which is a modified cell metabolism that favours a specialised fermentation over the aerobic respiration pathway.
2. Materials and Methods
3. Results
4. Discussion and Conslusions
- Mitogen-stimulated cell proliferation, mediated by K channel [44];
- K channel inhibitors can block the activation of murine B lymphocytes and murine noncytolytic T lymphocytes [45];
- Ca inflow drives G1/S transition [46];
- Mice teratocarcinoma cells express L-type Ca and outward channels, and Na and inward rectifier channels during differentiation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chester, M. Second Sound in Solids. Phys. Rev. 1963, 131, 2013. [Google Scholar] [CrossRef]
- Weymann, H.D. Finite Speed of Propagation in Heat conduction, Diffusion and Viscous Shear Motion. Am. J. Phys. 1967, 35, 488–496. [Google Scholar] [CrossRef]
- Tzou, D.Y. The resonance phenomenon in thermal waves. Int. J. Eng. Sci. 1991, 29, 1167–1177. [Google Scholar] [CrossRef]
- Peshkov, V. Second Sound in Helium II. J. Phys. 1944, 8, 381–389. [Google Scholar]
- Kaminski, W. Hyperbolic Heat Conduction Equation for Materials With Nonhomogeneous Inner Structure. J. Heat Mass Transf. 1990, 112, 555–560. [Google Scholar] [CrossRef]
- Özişik, M.N.; Vick, B. Propagation and Reflection of Thermal Waves in a Finite. Medium. Int. J. Heat Mass Transf. 1984, 27, 1845–1854. [Google Scholar] [CrossRef]
- Tzou, D.Y. On the Thermal Shock Wave Induced by a Moving Heat Source. ASME Int. J. Heat Mass Transf. 1989, 111, 232–238. [Google Scholar] [CrossRef]
- Tzou, D.Y. Thermal Shock Waves Induced by a Moving Crack. ASME Int. J. Heat Mass Transf. 1990, 112, 21–27. [Google Scholar] [CrossRef]
- Tzou, D.Y. The effects of thermal shock waves on the crack initiation around a moving heat source. Eng. Fract. Mech. 1989, 34, 1109–1118. [Google Scholar] [CrossRef]
- Glass, D.E.; Özişik, M.N.; Vick, B. Non-Fourier effects on transient temperature resulting from periodic on-off heat flux. Int. J. Heat Mass Transf. 1987, 30, 1623–1631. [Google Scholar] [CrossRef]
- Feynman, R.; Leighton, R.; Sands, M. The Feynman Lectures on Physics, Volume I; Addison Wesley: Reading, UK, 2005. [Google Scholar]
- Lucia, U.; Grisolia, G. Resonance in thermal fluxes through cancer membrane. AAPP Atti Della Accad. Peloritana Dei Pericolanti 2020, 98, SC11–SC16. [Google Scholar] [CrossRef]
- Lucia, U.; Grisolia, G. Thermal resonance and cell behavior. Entropy 2020, 22, 774. [Google Scholar] [CrossRef]
- Lucia, U.; Grisolia, G. Thermal resonance in living cells to control their heat exchange: Possible applications in cancer treatment. Int. Commun. Heat Mass Transf. 2022, 131, 105842. [Google Scholar] [CrossRef]
- Lucia, U.; Grisolia, G.; Ponzetto, A.; Bergandi, L.; Silvagno, F. Thermomagnetic resonance affects cancer growth and motility: Thermomagnetic resonance and cancer. R. Soc. Open Sci. 2020, 7, 200299. [Google Scholar] [CrossRef]
- Lucia, U.; Grisolia, G.; Ponzetto, A.; Silvagno, F. An engineering thermodynamic approach to select the electromagnetic wave effective on cell growth. J. Theor. Biol. 2017, 429, 181–189. [Google Scholar] [CrossRef]
- Bergandi, L.; Lucia, U.; Grisolia, G.; Granata, R.; Gesmundo, I.; Ponzetto, A.; Paolucci, E.; Borchiellini, R.; Ghigo, E.; Silvagno, F. The extremely low frequency electromagnetic stimulation selective for cancer cells elicits growth arrest through a metabolic shift. Biochim. Biophys. Acta 2019, 1866, 1389–1397. [Google Scholar] [CrossRef]
- Katchalsky, A.; Kedem, O. Thermodynamics of Flow Processes in Biological Systems. Biophys. J. 1962, 2, 53–78. [Google Scholar] [CrossRef] [Green Version]
- Voet, D.; Voet, J.G. Biochemistry, 3rd ed.; John Wiley & Sons: New York, NY, USA, 2004. [Google Scholar]
- Schrödinger, E. What’s Life? The Physical Aspect of the Living Cell; Cambridge University Press: Cambridge, UK, 1944. [Google Scholar]
- Callen, H.B. Thermodynamics; Wiley: New York, NY, USA, 1960. [Google Scholar]
- Lucia, U.; Grisolia, G. Biofuels from Micro-Organisms: Thermodynamic Considerations on the Role of Electrochemical Potential on Micro-Organisms Growth. Appl. Sci. 2021, 11, 2591. [Google Scholar] [CrossRef]
- Lucia, U.; Grisolia, G. Non-equilibrium thermodynamic approach to Ca2+-fluxes in cancer. Appl. Sci. 2020, 10, 6737. [Google Scholar] [CrossRef]
- Lucia, U. Bioengineering thermodynamics: An engineering science for thermodynamics of biosystems. Int. J. Thermodyn. 2015, 18, 254–265. [Google Scholar] [CrossRef] [Green Version]
- Lucia, U.; Grisolia, G. Thermal Physics and Glaucoma: From Thermodynamic to Biophysical Considerations to Designing Future Therapies. Appl. Sci. 2020, 10, 7071. [Google Scholar] [CrossRef]
- Rizzuto, R.; Marchi, S.; Bonora, M.; Aguiari, P.; Bononi, A.; Stefani, D.D.; Giorgi, C.; Leo, S.; Rimessi, A.; Siviero, R.; et al. Ca2+ transfer from the ER to mitochondria: When, how and why. Biochim. Biophys. Acta 2009, 1787, 1342–1351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berridge, M.J.; Bootman, M.D.; Roderick, H.L. Calcium signalling: Dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 2003, 4, 517–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foyouzi-Youssefi, R.; Arnaudeau, S.; Borner, C.; Kelley, W.L.; Tschopp, J.; Lew, D.P.; Demaurex, N.; Krause, K.H. Bcl-2 decreases the free Ca2+ concentration within the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 2000, 97, 5723–5728. [Google Scholar] [CrossRef] [Green Version]
- Akl, H.; Vervloessem, T.; Kiviluoto, S.; Bittremieux, M.; Parys, J.B.; Smedt, H.D.; Bultynck, G. A dual role for the anti-apoptotic Bcl-2 protein in cancer: Mitochondria versus endoplasmic reticulum. Biochim. Biophys. Acta 2014, 1843, 2240–2252. [Google Scholar] [CrossRef] [Green Version]
- Akl, H.; Bultynck, G. Altered Ca2+ signaling in cancer cells: Proto-oncogenes and tumor suppressors targeting IP3 receptors. Biochim. Biophys. Acta 2013, 1835, 180–193. [Google Scholar] [CrossRef]
- Giorgi, C.; Ito, K.; Lin, H.K.; Santangelo, C.; Wieckowski, M.R.; Lebiedzinska, M.; Bononi, A.; Bonora, M.; Duszynski, J.; Bernardi, R.; et al. PML regulates apoptosis at endoplasmic reticulum by modulating calcium release. Science 2019, 330, 1247–1251. [Google Scholar] [CrossRef] [Green Version]
- Parsadaniantz, S.M.; le Goazigo, A.R.; Sapienza, A.; Habas, C.; Baudouin, C. Glaucoma: A Degenerative Optic Neuropathy Related to Neuroinflammation? Cells 2020, 9, 535. [Google Scholar] [CrossRef] [Green Version]
- Soto, I.; Howell, G.R. The complex role of neuroinflammation in glaucoma. Cold Spring Harb. Perspect. Med. 2014, 4, a017269. [Google Scholar] [CrossRef]
- Yourgrau, W.; van der Merwe, A.; Raw, G. Treatise on Irreversible and Statistical Thermophysics; Dover: New York, NY, USA, 1982. [Google Scholar]
- Goupil, C.; Seifert, W.; Zabrocki, K.; Müller, E.; Snyder, G.J. Thermodynamics of Thermoelectric Phenomena and Applications. Entropy 2011, 13, 1481–1517. [Google Scholar] [CrossRef] [Green Version]
- Degroot, S.R.; Mazur, P. Non-Equilibrium Thermodynamics; North-Holland Publishing Company: Amsterdam, The Netherlands, 1962. [Google Scholar]
- Apostol, T.S. Calculus. Volume 2: Multi-Variable Calculus and Linear Algebra with Applications to Differential Equations and Probability; Wiley: Hoboken, NJ, USA, 1969. [Google Scholar]
- Sherwood, L. Human Physiology: From Cells to Systems; Brooks Cole: Andover, MA, USA, 2009. [Google Scholar]
- Prigogine, I. Etude Thermodynamique des Phénoménes Irréversibles; Desoer: Liége, Belgium, 1947. [Google Scholar]
- Milo, R.; Phillips, R. Cell Biology by the Numbers; Garland Science: New York, NY, USA, 2003. [Google Scholar]
- Mercer, W.B. Technical Manuscript 640—The Living Cell as an Open Thermodynamic System: Bacteria and Irreversible Thermodynamica; Department of the U.S. Army-Fort Detrick: Frederic, MA, USA, 1971. [Google Scholar]
- Tuszynski, J.A. Molecular and Cellular Biophysics; CRC: Boca Raton, FL, USA, 2019. [Google Scholar]
- Sundelacruz, S.; Levin, M.; Kaplan, D.L. Role of membrane potential in the regulation of cell proliferation and differentiation. Stem Cell Rev. Rep. 2009, 5, 231–246. [Google Scholar] [CrossRef]
- Wonderlin, W.F.; Strobl, J.S. Potassium channels, proliferation and G1 progression. J. Membr. Biol. 1996, 154, 91–107. [Google Scholar] [CrossRef]
- Ouadid-Ahidouch, H.; Le Bourhis, X.; Roudbaraki, M.; Toillon, R.A.; Delcourt, P.; Prevarskaya, N. Changes in the K+ current-density of MCF-7 cells during progression through the cell cycle: Possible involvement of a h-ether.a-gogo K+ channel. Recept. Channels 2001, 7, 345–356. [Google Scholar]
- Ouadid-Ahidouch, H.; Ahidouch, A. K+ channel expression in human breast cancer cells: Involvement in cell cycle regulation and carcinogenesis. J. Membr. Biol. 2008, 221, 1–6. [Google Scholar] [CrossRef]
Ion | Extracellular | Intracellular | Chemical | Membrane |
---|---|---|---|---|
Species | Concentration | Concentration | Potential | Potential |
[mM] | [mM] | [kJ mol] | [mV] | |
Na | 18 | 150 | −261.89 | +56 |
K | 140 | 5 | −283.26 | −89 |
Cl | 120 | 7 | −131.26 | −76 |
Ca | 1.2 | 0.1 | −553.04 | +125 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucia, U.; Grisolia, G. From Ion Fluxes in Living Cells to Metabolic Power Considerations. Mathematics 2023, 11, 2645. https://doi.org/10.3390/math11122645
Lucia U, Grisolia G. From Ion Fluxes in Living Cells to Metabolic Power Considerations. Mathematics. 2023; 11(12):2645. https://doi.org/10.3390/math11122645
Chicago/Turabian StyleLucia, Umberto, and Giulia Grisolia. 2023. "From Ion Fluxes in Living Cells to Metabolic Power Considerations" Mathematics 11, no. 12: 2645. https://doi.org/10.3390/math11122645
APA StyleLucia, U., & Grisolia, G. (2023). From Ion Fluxes in Living Cells to Metabolic Power Considerations. Mathematics, 11(12), 2645. https://doi.org/10.3390/math11122645