Mylar Balloon and Associated Geometro-Mechanical Moments
Abstract
:1. Introduction
2. Balloon’s Characteristics Expressed via Geometrical Moments
3. Mechanical Moments of Solid and Hollow Mylar Balloons
3.1. Mechanical Moments of Solid Mylar Balloon
3.2. Mechanical Moments of Hollow Mylar Balloon
4. Recursive Evaluation of Geometrical Moments and
5. Residue Classes Modulo 4 of Mechanical Moments
5.1. Calculation of Numerical Coefficients for Solid Mylar Balloon
5.2. Calculation of Numerical Coefficients for Hollow Mylar Balloon
6. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paulsen, W. What is the shape of a Mylar balloon? Am. Math. Mon. 1994, 101, 953–958. [Google Scholar] [CrossRef]
- Smalley, J. Development of the E-Balloon; Technical Report AFCRL-70-0543; National Center for Atmospheric Research: Boulder, CO, USA, 1970. [Google Scholar]
- Tang, J.; Pu, S.; Yu, P.; Xie, W.; Li, Y.; Hu, B. Research on trajectory prediction of a high-altitude zero-pressure balloon system to assist rapid recovery. Aerospace 2022, 9, 622. [Google Scholar] [CrossRef]
- Kawaguchi, M. The shallowest possible pneumatic forms. Bull. Int. Assoc. Shell Struct. 1977, 18, 3–11. [Google Scholar]
- Mladenov, I.; Oprea, J. The Mylar balloon revisited. Am. Math. Mon. 2003, 110, 761–784. [Google Scholar] [CrossRef]
- Wolfram Language. Available online: https://en.wikipedia.org/wiki/Wolfram_Language (accessed on 5 June 2023).
- Mladenov, I. On the geometry of the Mylar balloon. Comptes Rendus L’acad. Bulg. Sci. 2001, 54, 39–44. [Google Scholar]
- Pulov, V.; Hadzhilazova, M.; Mladenov, I. The Mylar balloon: An alternative description. Geom. Integr. Quant. 2015, 16, 256–269. [Google Scholar]
- Kovalchuk, V.; Mladenov, I.M. Classical motions of infinitesimal rotators on Mylar balloons. Math. Methods Appl. Sci. 2020, 43, 9874–9887. [Google Scholar] [CrossRef]
- Gradstein, I.S.; Ryzhik, I.M. Tables of Integrals, Series, and Products, 7th ed.; Jeffrey, A., Zwillinger, D., Eds.; Academic Press: Oxford, UK, 2007. [Google Scholar]
- Celletti, A. Stability and Chaos in Cellestial Mechanics; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Westfall, P. Kurtosis as Peakedness. Am. Stat. 2014, 68, 191–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byrd, P.; Friedman, M. Handbook of Elliptic Integrals for Engineers and Scientists, 2nd ed.; Springer: New York, NY, USA, 1971. [Google Scholar]
- Ramsey, A. Newtonian Attraction; Cambridge University Press: Cambridge, UK, 1961. [Google Scholar]
- Sterne, T. An Introduction to Celestial Mechanics; Interscience: New York, NY, USA, 1960. [Google Scholar]
0 | 1 | 1 | 2 | 3 | |||
4 | 5 | 6 | 7 | ||||
8 | 9 | 10 | 11 | ||||
12 | 13 | 14 | 15 | ||||
16 | 17 | 18 | 19 |
0 | 1 | 1 | 2 | 3 | |||
4 | 5 | 6 | 7 | ||||
8 | 9 | 10 | 11 | ||||
12 | 13 | 14 | 15 | ||||
16 | 17 | 18 | 19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovalchuk, V.; Pulov, V.I.; Mladenov, I.M. Mylar Balloon and Associated Geometro-Mechanical Moments. Mathematics 2023, 11, 2646. https://doi.org/10.3390/math11122646
Kovalchuk V, Pulov VI, Mladenov IM. Mylar Balloon and Associated Geometro-Mechanical Moments. Mathematics. 2023; 11(12):2646. https://doi.org/10.3390/math11122646
Chicago/Turabian StyleKovalchuk, Vasyl, Vladimir I. Pulov, and Ivaïlo M. Mladenov. 2023. "Mylar Balloon and Associated Geometro-Mechanical Moments" Mathematics 11, no. 12: 2646. https://doi.org/10.3390/math11122646
APA StyleKovalchuk, V., Pulov, V. I., & Mladenov, I. M. (2023). Mylar Balloon and Associated Geometro-Mechanical Moments. Mathematics, 11(12), 2646. https://doi.org/10.3390/math11122646