Digital Triplet: A Sequential Methodology for Digital Twin Learning
Abstract
:1. Introduction
1.1. Digital Twin
1.2. Current Research on Digital Twin Modeling
1.3. Digital Twins and Computer Experiments
1.4. Sequential Designs
2. Models for Digital Triplet
3. Sequential Experimental Designs for Digital Triplet
4. Simulation Studies
4.1. Two-Dimensional Cases
4.2. Six-Dimensional Cases
4.3. Summary
5. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, X.; Wang, Z.; Hua, Q.; Shang, W.L.; Luo, Q.; Yu, K. AI-empowered speed extraction via port-like videos for vehicular trajectory analysis. IEEE Trans. Intell. Transp. Syst. 2023, 24, 4541–4552. [Google Scholar] [CrossRef]
- Dai, Y.; Zhang, Y. Adaptive digital twin for vehicular edge computing and networks. J. Commun. Inf. Netw. 2022, 7, 48–59. [Google Scholar] [CrossRef]
- Tao, F.; Qi, Q. Make more digital twins. Nature 2019, 573, 490–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, F.; Zhang, H.; Liu, A.; Nee, A.Y.C. Digital Twin in Industry: State-of-the-Art. IEEE Trans. Ind. Inform. 2019, 15, 2405–2415. [Google Scholar] [CrossRef]
- Wagg, D.J.; Worden, K.; Barthorpe, R.J.; Gardner, P. Digital twins: State-of-the-aArt and future directions for modeling and simulation in egineering dynamics applications. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part B Mech. Eng. 2020, 6, 030901. [Google Scholar] [CrossRef]
- Wright, L.; Davidson, S. How to tell the difference between a model and a digital twin. Adv. Model. Simul. Eng. Sci. 2020, 7, 1–13. [Google Scholar] [CrossRef]
- Zheng, Y.; Yang, S.; Cheng, H. An application framework of digital twin and its case study. J. Ambient. Intell. Humaniz. Comput. 2019, 10, 1141–1153. [Google Scholar] [CrossRef]
- Tao, F.; Xiao, B.; Qi, Q.L.; Cheng, J.F.; Ji, P. Digital twin modeling. J. Manuf. Syst. 2022, 64, 372–389. [Google Scholar] [CrossRef]
- Angjeliu, G.; Coronelli, D.; Cardani, G. Development of the simulation model for digital twin applications in historical masonry buildings: The integration between numerical and experimental reality. Comput. Struct. 2020, 238, 106282. [Google Scholar] [CrossRef]
- Berri, P.C.; Dalla Vedova, M.D.L. A review of simplified servovalve models for digital twins of electrohydraulic actuators. J. Phys. Conf. Ser. Appl. Phys. Simul. Comput. 2020, 1603, 23–25. [Google Scholar] [CrossRef]
- Chakraborty, S.L.; Adhikari, S. Machine learning based digital twin for dynamical systems with multiple time-scales. arXiv 2020, arXiv:2005.05862. [Google Scholar] [CrossRef]
- Liu, C.; Jiang, P.; Jiang, W. Web-based digital twin modeling and remote control of cyber-physical production systems. Robot. Comput.-Integr. Manuf. 2020, 64, 101956. [Google Scholar] [CrossRef]
- Tarkhov, D.A.; Malykhina, G.F. Neural network modeling methods for creating digital twins of real objects. J. Phys. Conf. Ser. 2019, 1236, 012056. [Google Scholar] [CrossRef]
- Fang, K.T.; Li, R.Z.; Sudjianto, A. Design and Modeling for Computer Experiments; Chapman and Hall/CRC: New York, NY, USA, 2005. [Google Scholar]
- Ranjan, P.; Bingham, D.; Michailidis, G. Sequential experiment design for contour estimation from complex computer codes. Technometrics 2008, 50, 527–541. [Google Scholar] [CrossRef]
- Williams, B.J.; Santner, T.J.; Notz, W.I. Sequential design of computer experiments to minimize integrated response functions. Stat. Sin. 2000, 10, 1133–1152. [Google Scholar]
- Box, G.E.P.; Wilson, K.B. On the experimental attainment of optimum conditions. J. R. Stat. Soc. Ser. B 1951, 13, 1–45. [Google Scholar] [CrossRef]
- Burges, C. A tutorial on support vector machines for pattern recognition. In Data Mining and Knowledge Discovery; Kluwer Academic Publishers: Boston, MA, USA, 1998. [Google Scholar]
- Vapnik, V. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 1995. [Google Scholar]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Wadsworth: Belmont, CA, USA, 1984. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- White, H. Learning in neural networks: A statistical perspective. Neural Comput. 1989, 1, 425–464. [Google Scholar] [CrossRef]
- Lippmann, R.P. An introduction to computing with neural nets. IEEE ASSP Mag. 1987, 4, 4–22. [Google Scholar] [CrossRef]
- Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; Adaptive Computation and Machine Learning; MIT Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Thornton, C.; Hutter, F.; Hoos, H.H.; Leyton-Brown, K. Auto-WEKA: Combined Selection and Hyperparameter Optimization of Classification Algorithms. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’13, Chicago, IL, USA, 11–14 August 2013; pp. 847–855. [Google Scholar]
- McKay, M.D.; Beckman, R.J.; Conover, W.J. Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 1979, 33, 239–245. [Google Scholar]
- Santner, T.J.; Williams, B.J.; Notz, W.I.; Williams, B.J. The Design and Analysis of Computer Experiments; Springer: New York, NY, USA, 2003. [Google Scholar]
- Johnson, M.E.; Moore, L.M.; Ylvisaker, D. Minimax and maximin distance design. J. Stat. Plan. Inference 1990, 26, 131–148. [Google Scholar] [CrossRef]
- Joseph, V.R.; Gul, E.; Ba, S. Maximum projection designs for computer experiments. Biometrika 2015, 102, 371–380. [Google Scholar] [CrossRef]
- Shang, B.Y.; Apley, D.W. Large-scale fully-sequential space-filling algorithms for computer experiments. J. Qual. Technol. 2019, 53, 173–196. [Google Scholar] [CrossRef]
- Ba, S.; Joseph, V.R. Maximum Projection Designs. R Package Version, 4.1-2. 2018. Available online: https://CRAN.R-project.org/package=MaxPro (accessed on 30 May 2023).
- Binois, M.; Huang, J.; Gramacy, R.B.; Ludkovski, M. Replication or exploration? Sequential design for stochastic simulation experiments. Technometrics 2019, 61, 7–23. [Google Scholar] [CrossRef] [Green Version]
- Gichane, M.M.; Byiringiro, J.B.; Chesang, A.K.; Nyaga, P.M.; Langat, R.K.; Smajic, H.; Kiiru, C.W. Digital triplet approach for real-time monitoring and control of an elevator security system. Designs 2020, 4, 9. [Google Scholar] [CrossRef] [Green Version]
- Umeda, Y.; Ota, J.; Kojima, F.; Saito, M.; Matsuzawa, H.; Sukekawa, T.; Takeuchi, A.; Makida, K.; Shirafuji, S. Development of an education program for digital manufacturing system engineers based on ‘Digital Triplet’ concept. Procedia Manuf. 2019, 31, 363–369. [Google Scholar] [CrossRef]
Model | Software |
---|---|
Linear (First-order) model (LM) | The stats package in R |
Second-order model (SLM) | The stats package in R |
Gaussian process (GP) | R package “hetGP” |
Artificial Neural network (ANN) | R package “ANN2” |
Automated machine learning (AML) | R package “automl” |
The First Stage | The Second Stage | Software (or Source) |
---|---|---|
Central composite design (CCD) | Two CCD’s (CCD) | [17] |
D-optimal design (DOD) | Two DOD’s (DOD) | R package “OptimalDesign” |
Random design (RD) | Based on RD, resample another “RD” (RD) | The stats package in R |
Maximin distance design (MDD) | Sequential maximin distance design (MDD) | R package “FSSF” |
MaxPro design (MD) | Sequential MaxPro design (MD) | R package “MaxPro” |
hetGP design (hGPD) | Sequential hetGP design (hGPD) | R package “hetGP” |
Function | Formulation | Domain |
---|---|---|
McCormick | , | |
Ackley | ||
Rastrigin |
Function | Formulation | Domain |
---|---|---|
OTL circuit | where | |
Borehole | ||
Robot arm | where and | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Lin, D.K.J.; Wang, L. Digital Triplet: A Sequential Methodology for Digital Twin Learning. Mathematics 2023, 11, 2661. https://doi.org/10.3390/math11122661
Zhang X, Lin DKJ, Wang L. Digital Triplet: A Sequential Methodology for Digital Twin Learning. Mathematics. 2023; 11(12):2661. https://doi.org/10.3390/math11122661
Chicago/Turabian StyleZhang, Xueru, Dennis K. J. Lin, and Lin Wang. 2023. "Digital Triplet: A Sequential Methodology for Digital Twin Learning" Mathematics 11, no. 12: 2661. https://doi.org/10.3390/math11122661
APA StyleZhang, X., Lin, D. K. J., & Wang, L. (2023). Digital Triplet: A Sequential Methodology for Digital Twin Learning. Mathematics, 11(12), 2661. https://doi.org/10.3390/math11122661