Guaranteed Pursuit and Evasion Times in a Differential Game for an Infinite System in Hilbert Space l2
Abstract
:1. Introduction
2. Statement of Problem
3. Pursuit Differential Game
4. Evasion Differential Game
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fattorini, H.O. Time-Optimal control of solutions of operational differential equations. SIAM J. Control. 1964, 2, 54–59. [Google Scholar]
- Lions, J.L. Contrôle Optimal de Systémes Gouvernées par des Equations aux Dérivées Partielles; Dunod: Paris, France, 1968. [Google Scholar]
- Osipov, Y.S. The theory of differential games in systems with distributed parameters. Dokl. Akad. Nauk. SSSR 1975, 223, 1314–1317. [Google Scholar]
- Liu, W.; Zhao, T.; Ito, K.; Zhang, Z. Error estimates of Fourier finite volume element method for parabolic Dirichlet boundary optimal control problems on complex connected domains. Appl. Numer. Math. 2023, 186, 164–201. [Google Scholar] [CrossRef]
- Geshkovski, B.; Zuazua, E. Turnpike in optimal control of PDEs, ResNets, and beyond. Acta Numer. 2022, 31, 135–263. [Google Scholar] [CrossRef]
- Butkovskiy, A.G. Theory of Optimal Control of Distributed Parameter Systems; Elsevier: New York, NY, USA, 1969. [Google Scholar]
- Chernous’ko, F.L. Bounded controls in distributed-parameter systems. J. Appl. Math. Mech. 1992, 56, 707–723. [Google Scholar] [CrossRef]
- Avdonin, S.A.; Ivanov, S.A. Families of Exponentials: The Method of Moments in Controllability Problems for Distributed Parameter Systems; Cambridge University Press: Cambridge, MA, USA, 1995. [Google Scholar]
- Satimov, N.Y.; Tukhtasinov, M. On Some Game Problems for First-Order Controlled Evolution Equations. Differ. Equ. 2005, 41, 1169–1177. [Google Scholar] [CrossRef]
- Chaves-Silva, F.; Zhang, X.; Zuazua, E. Controllability of evolution equations with memory. SIAM J. Control Optim. 2017, 55, 2437–2459. [Google Scholar] [CrossRef] [Green Version]
- Albeverio, S.; Alimov, S.A. On a time-optimal control problem associated with the heat exchange process. Appl. Math. Optim. 2008, 57, 58–68. [Google Scholar] [CrossRef]
- Martin, P.; Rosier, L.; Rouchon, P. Null controllability of the structurally damped wave equation with moving control. SIAM J. Control Optim. 2013, 51, 660–684. [Google Scholar] [CrossRef] [Green Version]
- Azamov, A.A.; Ruziboev, M.B. The time-optimal problem for evolutionary partial differential equations. J. Appl. Math. Mech. 2013, 77, 220–224. [Google Scholar] [CrossRef]
- Satimov, N.Y.; Tukhtasinov, M. Game problems on a fixed interval in controlled first-order evolution equations. Math. Notes 2006, 80, 578–589. [Google Scholar] [CrossRef]
- Ibragimov, G.I. A Problem of Optimal Pursuit in Systems with Distributed Parameters. J. Appl. Math. Mech. 2002, 66, 719–724. [Google Scholar] [CrossRef]
- Tukhtasinov, M. Some problems in the theory of differential pursuit games in systems with distributed parameters. J. Appl. Math. Mech. 1995, 59, 979–984. [Google Scholar] [CrossRef]
- Tukhtasinov, M.; Mamatov, M.S. On Pursuit Problems in Controlled Distributed Parameters Systems. Math. Notes 2008, 84, 256–262. [Google Scholar] [CrossRef]
- Ibragimov, G.I. Optimal pursuit time for a differential game in the Hilbert space l2. ScienceAsia 2013, 39S, 25–30. [Google Scholar] [CrossRef] [Green Version]
- Ibragimov, G.I.; Allahabi, F.; Kuchkarov, A.S. A pursuit problem in an infinite system of second-order differential equations. Ukr. Math. J. 2014, 65, 1203–1216. [Google Scholar] [CrossRef]
- Rilwan, J.; Kumam, P.; Badakaya, A.J.; Ahmed, I. A modified dynamic equation of evasion differential game problem in a Hilbert space. Thai J. Math. 2020, 18, 199–211. [Google Scholar]
- Salimi, M.; Ferrara, M. Differential game of optimal pursuit of one evader by many pursuers. Int. J. Game Theory 2019, 48, 481–490. [Google Scholar] [CrossRef]
- Ibragimov, G.I.; Ferrara, M.; Alias, I.A.; Salimi, M.; Ismail, N. Pursuit and Evasion Games for an Infinite System of Differential Equations. Bull. Malays. Math. Sci. Soc. 2021, 45, 69–81. [Google Scholar] [CrossRef]
- Tukhtasinov, M.; Ibragimov, G.I.; Kuchkarova, S.A.; Hasim, R.M. Differential games for an infinite 2-systems of differential equations. Mathematics 2021, 9, 1467. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibragimov, G.; Qushaqov, X.; Muxammadjonov, A.; Pansera, B.A. Guaranteed Pursuit and Evasion Times in a Differential Game for an Infinite System in Hilbert Space l2. Mathematics 2023, 11, 2662. https://doi.org/10.3390/math11122662
Ibragimov G, Qushaqov X, Muxammadjonov A, Pansera BA. Guaranteed Pursuit and Evasion Times in a Differential Game for an Infinite System in Hilbert Space l2. Mathematics. 2023; 11(12):2662. https://doi.org/10.3390/math11122662
Chicago/Turabian StyleIbragimov, Gafurjan, Xolmurodjon Qushaqov, Akbarjon Muxammadjonov, and Bruno Antonio Pansera. 2023. "Guaranteed Pursuit and Evasion Times in a Differential Game for an Infinite System in Hilbert Space l2" Mathematics 11, no. 12: 2662. https://doi.org/10.3390/math11122662
APA StyleIbragimov, G., Qushaqov, X., Muxammadjonov, A., & Pansera, B. A. (2023). Guaranteed Pursuit and Evasion Times in a Differential Game for an Infinite System in Hilbert Space l2. Mathematics, 11(12), 2662. https://doi.org/10.3390/math11122662