Mathematical Optimization of Carbon Storage and Transport Problem for Carbon Capture, Use, and Storage Chain
Abstract
:1. Introduction
2. Literature Review
3. Problem Description and Model Formulation
3.1. Problem Background
3.2. Model Formulation
- set of all power plants, .
- index of the storage location.
- set of all ship types, .
- set of all days in the planning horizon, .
- set of all non-negative integers.
- fuel consumption per unit distance traveled by ships of type (ton/n mile).
- unit fuel price (USD/ton).
- time-charter cost of renting a ship of type for days (USD).
- maximum number of ships of type that can be chartered in.
- total length of a trip from power plant () to the storage location and then back to the power plant (n mile).
- tank capacity of ships of type (ton).
- sailing speed of ships of type () (n mile/hour).
- storage capacity of power plant (ton).
- benefit of transporting a ton of from power plants to the storage location (i.e., 0) compared to emitting a ton of into the atmosphere (USD/ton).
- sailing time of ships of type to complete a trip from power plant () to the storage location and then back to the power plant, which is related to and (day).
- amount of produced by power plant in day (ton).
- integer, the number of charter-in ships of type , , allocated to power plant , .
- integer, the number of ships of type , , departing from power plant , , at the beginning of day , .
- continuous, the amount of emitted by power plant to the atmosphere at the beginning of day .
- continuous, the amount of transported by ships departing from power plant to the storage location in day .
- continuous, the amount of stored at power plant at the end of the day , , where, by convention, .
[M1] | (1) | ||
subject to: | (2) | ||
(3) | |||
(4) | |||
(5) | |||
(6) | |||
(7) | |||
(8) | |||
(9) | |||
(10) | |||
(11) | |||
(12) |
[M2] | Objective (1) |
subject to: | Constraints (2), (3), (5)–(12). |
4. Computational Experiments
4.1. Experimental Setting
4.2. Experimental Results
4.3. Sensitivity Analyses
4.3.1. Impact of the Fuel Price
4.3.2. Impact of the Time-Charter Cost
4.3.3. Impact of the Ship Sailing Speed
4.4. Summary of Test Results and Managerial Insights
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Carvalho, M.G.; Bonifacio, M.; Dechamps, P. Building a low carbon society. Energy 2011, 36, 1842–1847. [Google Scholar] [CrossRef]
- Xiao, J.; Zhen, Z.; Tian, L.; Su, B.; Chen, H.; Zhu, A.X. Green behavior towards low-carbon society: Theory, measurement and action. J. Clean. Prod. 2021, 278, 123765. [Google Scholar] [CrossRef]
- Gabrielli, P.; Campos, J.; Becattini, V.; Mazzotti, M.; Sansavini, G. Optimization and assessment of carbon capture, transport and storage supply chains for industrial sectors: The cost of resilience. Int. J. Greenh. Gas Control 2022, 121, 103797. [Google Scholar] [CrossRef]
- Ogland-Hand, J.D.; Cohen, S.M.; Kammer, R.M.; Ellett, K.M.; Saar, M.O.; Bennett, J.A.; Middleton, R.S. The importance of modeling carbon dioxide transportation and geologic storage in energy system planning tools. Front. Energy Res. 2022, 10, 275. [Google Scholar] [CrossRef]
- Chaudhari, U.; Bhadoriya, A.; Jani, M.Y.; Sarkar, B. A generalized payment policy for deteriorating items when demand depends on price, stock, and advertisement under carbon tax regulations. Math. Comput. Simul. 2023, 207, 556–574. [Google Scholar] [CrossRef]
- Dey, B.K.; Datta, A.; Sarkar, B. Effectiveness of carbon policies and multi-period delay in payments in a global supply chain under remanufacturing consideration. J. Clean. Prod. 2023, 402, 136539. [Google Scholar] [CrossRef]
- Fact Sheet: President Biden Sets 2030 Greenhouse Gas Pollution Reduction Target Aimed at Creating Good-Paying Union Jobs and Securing U.S. Leadership on Clean Energy Technologies. Available online: https://www.whitehouse.gov/briefing-room/statements-releases/2021/04/22/fact-sheet-president-biden-sets-2030-greenhouse-gas-pollution-reduction-target-aimed-at-creating-good-paying-union-jobs-and-securing-u-s-leadership-on-clean-energy-technologies/ (accessed on 1 May 2023).
- A European Green Deal: Striving to Be the First Climate-Neutral Continent. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en (accessed on 1 May 2023).
- China’s Xi Targets Steeper Cut in Carbon Intensity by 2030. Available online: https://www.reuters.com/world/china/chinas-xi-targets-steeper-cut-carbon-intensity-by-2030-2020-12-12/ (accessed on 1 May 2023).
- Wu, B.; Liu, P.; Xu, X. An evolutionary analysis of low-carbon strategies based on the government–enterprise game in the complex network context. J. Clean. Prod. 2017, 141, 168–179. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, L.; Zhang, L.; Zhuang, Y.; Du, J. An optimization model for carbon capture utilization and storage supply chain: A case study in northeastern China. Appl. Energy 2018, 231, 194–206. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, M.; Wu, S.; Liu, F. A complex path model for low-carbon sustainable development of enterprise based on system dynamics. J. Clean. Prod. 2021, 321, 128934. [Google Scholar] [CrossRef]
- The Longship CCS Project. Available online: https://ccsnorway.com/the-project/ (accessed on 2 May 2023).
- CO2 Reduction through Storage under the North Sea. Available online: https://www.porthosco2.nl/en/ (accessed on 2 May 2023).
- Karlsson, S.; Normann, F.; Odenberger, M.; Johnsson, F. Modeling the development of a carbon capture and transportation infrastructure for Swedish industry. Int. J. Greenh. Gas Control 2023, 124, 103840. [Google Scholar] [CrossRef]
- Ostovari, H.; Müller, L.; Mayer, F.; Bardow, A. A climate-optimal supply chain for CO2 capture, utilization, and storage by mineralization. J. Clean. Prod. 2022, 360, 131750. [Google Scholar] [CrossRef]
- Ma, Z.; Chen, B.; Pawar, R.J. Phase-based design of CO2 capture, transport, and storage infrastructure via SimCCS3.0. Sci. Rep. 2023, 13, 6527. [Google Scholar] [CrossRef] [PubMed]
- Carbon Capture, Utilisation and Storage. Available online: https://www.iea.org/fuels-and-technologies/carbon-capture-utilisation-and-storage (accessed on 3 May 2023).
- Is Carbon Capture too Expensive? Available online: https://www.iea.org/commentaries/is-carbon-capture-too-expensive (accessed on 3 May 2023).
- Carbon Capture, Use, and Storage (CCUS) Report. Available online: https://dualchallenge.npc.org/downloads.php (accessed on 3 May 2023).
- Scaling the CCUS Industry to Achieve Net-Zero Emissions. Available online: https://www.mckinsey.com/industries/oil-and-gas/our-insights/scaling-the-ccus-industry-to-achieve-net-zero-emissions (accessed on 3 May 2023).
- Rahman, F.A.; Aziz, M.M.A.; Saidur, R.; Bakar, W.A.W.A.; Hainin, M.; Putrajaya, R.; Hassan, N.A. Pollution to solution: Capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future. Renew. Sustain. Energy Rev. 2017, 71, 112–126. [Google Scholar] [CrossRef]
- Tapia, J.F.D.; Lee, J.Y.; Ooi, R.E.H.; Foo, D.C.Y.; Tan, R.R. A review of optimization and decision-making models for the planning of CO2 capture, utilization and storage (CCUS) systems. Sustain. Prod. Consum. 2018, 13, 1–15. [Google Scholar] [CrossRef]
- Al Baroudi, H.; Awoyomi, A.; Patchigolla, K.; Jonnalagadda, K.; Anthony, E.J. A review of large-scale CO2 shipping and marine emissions management for carbon capture, utilisation and storage. Appl. Energy 2021, 287, 116510. [Google Scholar] [CrossRef]
- Middleton, R.S.; Keating, G.N.; Viswanathan, H.S.; Stauffer, P.H.; Pawar, R.J. Effects of geologic reservoir uncertainty on CO2 transport and storage infrastructure. Int. J. Greenh. Gas Control 2012, 8, 132–142. [Google Scholar] [CrossRef]
- Leung, D.Y.C.; Caramanna, G.; Maroto-Valer, M.M. An overview of current status of carbon dioxide capture and storage technologies. Renew. Sustain. Energy Rev. 2014, 39, 426–443. [Google Scholar] [CrossRef] [Green Version]
- da Silva, F.T.F.; Carvalho, F.M.; Corrêa, J.L.G.; Merschmann, P.R.D.; Tagomori, I.S.; Szklo, A.; Schaeffer, R. CO2 capture in ethanol distilleries in Brazil: Designing the optimum carbon transportation network by integrating hubs, pipelines and trucks. Int. J. Greenh. Gas Control 2018, 71, 168–183. [Google Scholar] [CrossRef]
- Becattini, V.; Gabrielli, P.; Antonini, C.; Campos, J.; Acquilino, A.; Sansavini, G.; Mazzotti, M. Carbon dioxide capture, transport and storage supply chains: Optimal economic and environmental performance of infrastructure rollout. Int. J. Greenh. Gas Control 2022, 117, 103635. [Google Scholar] [CrossRef]
- Weihs, G.A.F.; Kumar, K.; Wiley, D.E. Understanding the economic feasibility of ship transport of CO2 within the CCS Chain. Energy Procedia 2014, 63, 2630–2637. [Google Scholar] [CrossRef] [Green Version]
- Nogueira, T.; Rochedo, P.R.R.; Szklo, A. Evaluation of offshore CO2 transport alternatives in Brazil. Int. J. Greenh. Gas Control 2022, 116, 103629. [Google Scholar] [CrossRef]
- Weihs, G.A.F.; Ho, M.; Kambanis, J.; Wiley, D.E. Scoping study of the economics of CO2 transport and storage options for steel manufacturing emissions in eastern Australia. Int. J. Greenh. Gas Control 2022, 114, 103592. [Google Scholar] [CrossRef]
- Aspelund, A.; Mølnvik, M.J.; de Koeijer, G. Ship transport of CO2: Technical solutions and analysis of costs, energy utilization, exergy efficiency and CO2 emissions. Chem. Eng. Res. Des. 2006, 84, 847–855. [Google Scholar] [CrossRef]
- Calvillo, C.; Race, J.; Chang, E.; Turner, K.; Katris, A. Characterisation of UK industrial clusters and techno-economic cost assessment for carbon dioxide transport and storage implementation. Int. J. Greenh. Gas Control. 2022, 119, 103695. [Google Scholar] [CrossRef]
- Yoo, B.Y.; Choi, D.K.; Kim, H.J.; Moon, Y.S.; Na, H.S.; Lee, S.G. Development of CO2 terminal and CO2 carrier for future commercialized CCS market. Int. J. Greenh. Gas Control 2013, 12, 323–332. [Google Scholar] [CrossRef]
- Gola, S.; Noussia, K. From CO2 sources to sinks: Regulatory challenges for trans-boundary trade, shipment and storage. Resour. Conserv. Recycl. 2022, 179, 106039. [Google Scholar] [CrossRef]
- Scott, V.; Gilfillan, S.; Markusson, N.; Chalmers, H.; Haszeldine, R.S. Last chance for carbon capture and storage. Nat. Clim. Change 2013, 3, 105–111. [Google Scholar] [CrossRef] [Green Version]
- International Code for the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk (IGC Code). Available online: http://www.imo.org/en/OurWork/Safety/Cargoes/CargoesInBulk/Pages/IGC-Code.aspx (accessed on 27 February 2022).
- Msakni, M.K.; Haouari, M. Short-term planning of liquefied natural gas deliveries. Transp. Res. Part C Emerg. Technol. 2018, 90, 393–410. [Google Scholar] [CrossRef]
- Budiyanto, M.A.; Riadi, A.; Buana, I.G.N.S.; Kurnia, G. Study on the LNG distribution to mobile power plants utilizing small-scale LNG carriers. Heliyon 2020, 6, e04538. [Google Scholar] [CrossRef]
- Datta, A.; de Leon, R.; Krishnamoorti, R. Advancing carbon management through the global commoditization of CO2: The case for dual-use LNG-CO2 shipping. Carbon Manag. 2020, 11, 611–630. [Google Scholar] [CrossRef]
- Hardisty, P.E.; Sivapalan, M.; Brooks, P. The environmental and economic sustainability of carbon capture and storage. Int. J. Environ. Res. Public Health 2011, 8, 1460–1477. [Google Scholar] [CrossRef] [Green Version]
- Technical Support Document: Social Cost of Carbon, Methane, and Nitrous Oxide–Interim Estimates under Executive Order 13990. Available online: https://www.whitehouse.gov/wp-content/uploads/2021/02/TechnicalSupportDocument_SocialCostofCarbonMethaneNitrousOxide.pdf (accessed on 20 September 2022).
- Wen, M.; Pacino, D.; Kontovas, C.A.; Psaraftis, H.N. A multiple ship routing and speed optimization problem under time, cost and environmental objectives. Transp. Res. Part D Transp. Environ. 2017, 52, 303–321. [Google Scholar] [CrossRef]
- World Bunker Prices. Available online: https://shipandbunker.com/prices/av/global/av-g20-global-20-ports-average (accessed on 19 September 2022).
- Fagerholt, K.; Psaraftis, H.N. On two speed optimization problems for ships that sail in and out of emission control areas. Transp. Res. Part D Transp. Environ. 2015, 39, 56–64. [Google Scholar] [CrossRef] [Green Version]
- Fuel Consumption by Containership Size and Speed. Available online: https://transportgeography.org/contents/chapter4/transportation-and-energy/fuel-consumption-containerships/ (accessed on 8 March 2023).
- Qi, J.; Wang, S.; Psaraftis, H. Bi-level optimization model applications in managing air emissions from ships: A review. Commun. Transp. Res. 2021, 1, 100020. [Google Scholar] [CrossRef]
- Wang, W.; Wu, Y. Is uncertainty always bad for the performance of transportation systems? Commun. Transp. Res. 2021, 1, 100021. [Google Scholar] [CrossRef]
- Hassan, L.A.H.; Hewitt, M.; Mahmassani, H.S. Daily load planning under different autonomous truck deployment scenarios. Transp. Res. Part E Logist. Transp. Rev. 2022, 166, 102885. [Google Scholar] [CrossRef]
- Huang, D.; Wang, S. A two-stage stochastic programming model of coordinated electric bus charging scheduling for a hybrid charging scheme. Multimodal Transp. 2022, 1, 100006. [Google Scholar] [CrossRef]
- Liu, B.; Li, Z.C.; Wang, Y. A two-stage stochastic programming model for seaport berth and channel planning with uncertainties in ship arrival and handling times. Transp. Res. Part E Logist. Transp. Rev. 2022, 167, 102919. [Google Scholar] [CrossRef]
- Lashgari, M.; Akbari, A.A.; Nasersarraf, S. A new model for simultaneously optimizing ship route, sailing speed, and fuel consumption in a shipping problem under different price scenarios. Appl. Ocean. Res. 2021, 113, 102725. [Google Scholar] [CrossRef]
- Yuan, Z.; Liu, J.; Zhang, Q.; Liu, Y.; Yuan, Y.; Li, Z. Prediction and optimisation of fuel consumption for inland ships considering real-time status and environmental factors. Ocean Eng. 2021, 221, 108530. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, Z.; Ai, H.; Guo, X.; Luo, F. The impact of gis/gps network information systems on the logistics distribution cost of tobacco enterprises. Transp. Res. Part E Logist. Transp. Rev. 2021, 149, 102299. [Google Scholar] [CrossRef]
- Yan, R.; Wang, S.; Zhen, L.; Laporte, G. Emerging approaches applied to maritime transport research: Past and future. Commun. Transp. Res. 2021, 1, 100011. [Google Scholar] [CrossRef]
- Demissie, M.G.; Kattan, L. Estimation of truck origin-destination flows using GPS data. Transp. Res. Part E Logist. Transp. Rev. 2022, 159, 102621. [Google Scholar] [CrossRef]
- Lyu, N.; Wang, Y.; Wu, C.; Peng, L.; Thomas, A.F. Using naturalistic driving data to identify driving style based on longitudinal driving operation conditions. J. Intell. Connect. Veh. 2022, 5, 17–35. [Google Scholar] [CrossRef]
- Wang, S.; Tian, X.; Yan, R.; Liu, Y. A deficiency of prescriptive analytics—No perfect predicted value or predicted distribution exists. Electron. Res. Arch. 2022, 30, 3586–3594. [Google Scholar] [CrossRef]
- Wang, S.; Yan, R. A global method from predictive to prescriptive analytics considering prediction error for “predict, then optimize” with an example of low-carbon logistics. Clean. Logist. Supply Chain 2022, 4, 100062. [Google Scholar] [CrossRef]
- Wang, S.; Yan, R. “Predict, then optimize” with quantile regression: A global method from predictive to prescriptive analytics and applications to multimodal transportation. Multimodal Transp. 2022, 1, 100035. [Google Scholar] [CrossRef]
- Yan, R.; Wang, S. Integrating prediction with optimization: Models and applications in transportation management. Multimodal Transp. 2022, 1, 100018. [Google Scholar] [CrossRef]
- Yang, Y.; Jia, B.; Yan, X.Y.; Li, J.; Yang, Z.; Gao, Z. Identifying intercity freight trip ends of heavy trucks from GPS data. Transp. Res. Part E Logist. Transp. Rev. 2022, 157, 102590. [Google Scholar] [CrossRef]
- Li, Y.; Li, S.E.; Jia, X.; Zeng, S.; Wang, Y. FPGA accelerated model predictive control for autonomous driving. J. Intell. Connect. Veh. 2022, 5, 63–71. [Google Scholar] [CrossRef]
- Yalcin, H.; Daim, T.U. Logistics, supply chain management and technology research: An analysis on the axis of technology mining. Transp. Res. Part E Logist. Transp. Rev. 2022, 168, 102943. [Google Scholar] [CrossRef]
- Niu, B.; Mu, Z.; Cao, B.; Gao, J. Should multinational firms implement blockchain to provide quality verification? Transp. Res. Part E Logist. Transp. Rev. 2021, 145, 102121. [Google Scholar] [CrossRef]
- Choi, T.M.; Siqin, T. Blockchain in logistics and production from Blockchain 1.0 to Blockchain 5.0: An intra-inter-organizational framework. Transp. Res. Part E Logist. Transp. Rev. 2022, 160, 102653. [Google Scholar] [CrossRef]
- Liu, S.; Hua, G.; Kang, Y.; Cheng, T.E.; Xu, Y. What value does blockchain bring to the imported fresh food supply chain? Transp. Res. Part E Logist. Transp. Rev. 2022, 165, 102859. [Google Scholar] [CrossRef]
- Yi, W.; Wu, S.; Zhen, L.; Chawynski, G. Bi-level programming subsidy design for promoting sustainable prefabricated product logistics. Clean. Logist. Supply Chain 2021, 2021, 100005. [Google Scholar] [CrossRef]
- Yi, W.; Zhen, L.; Jin, Y. Stackelberg game analysis of government subsidy on sustainable off-site construction and low-carbon logistics. Clean. Logist. Supply Chain 2021, 2021, 100013. [Google Scholar] [CrossRef]
- Zhang, L.; Guan, L.; Long, D.Z.; Shen, H.; Tang, H. Who is better off by selling extended warranties in the supply chain: The manufacturer, the retailer, or both? Ann. Oper. Res. 2020, 1–27. [Google Scholar] [CrossRef]
- Zhang, J.; Long, D.Z.; Wang, R.; Xie, C. Impact of penalty cost on customers’ booking decisions. Prod. Oper. Manag. 2021, 30, 1603–1614. [Google Scholar] [CrossRef]
Literature | Advantages of Shipping |
---|---|
[24] | Ships with low sunk costs can replace pipelines for transport, especially in areas where the geology is unsuitable for pipeline construction. |
[32] | Shipping is cost-effective in areas where sources are decentralized. |
[33] | Shipping is flexible to satisfy the need of each region. |
Literature | CO2 Capture | CO2 Transport | CO2 Storage | LNG Transport |
---|---|---|---|---|
[34] | √ | √ | ||
[35] | √ | √ | ||
[36] | √ | √ | ||
[38] | √ | |||
[39] | √ | |||
[40] | √ | √ |
Ship Type | 1 | 2 | 3 |
---|---|---|---|
Ship size | small | medium | large |
(n mile/hour) | 13 | 14 | 16 |
(ton/n mile) | 0.0641 | 0.0893 | 0.1172 |
(ton) | 9400 | 11,000 | 15,000 |
(USD) | 46,900 | 54,600 | 74,550 |
20 | 20 | 20 |
Scale Type | Number of Power Plants | No. | Objective Value (USD) | Time (s) | Gap (%) |
---|---|---|---|---|---|
Small | 10 | 1 | 18,488,070 | 3.51 | – |
2 | 18,685,312 | 0.61 | – | ||
3 | 18,718,096 | 0.50 | – | ||
4 | 18,932,070 | 0.48 | – | ||
5 | 18,680,620 | 0.58 | – | ||
6 | 18,610,402 | 3.56 | – | ||
7 | 18,609,668 | 0.64 | – | ||
8 | 18,637,785 | 0.53 | – | ||
9 | 18,896,223 | 0.62 | – | ||
10 | 18,737,553 | 0.53 | – | ||
Medium | 30 | 1 | 56,453,748 | 6.27 | – |
2 | 56,661,330 | 6.62 | – | ||
3 | 56,404,237 | 7.23 | – | ||
4 | 56,200,587 | 6.83 | – | ||
5 | 55,932,114 | 11.45 | – | ||
6 | 56,180,227 | 14.33 | – | ||
7 | 56,141,059 | 7.58 | – | ||
8 | 55,905,737 | 11.47 | – | ||
9 | 56,315,341 | 12.51 | – | ||
10 | 56,223,681 | 9.03 | – | ||
Large | 60 | 1 | 112,083,178 | 3600.50 | 0.04 |
2 | 111,322,988 | 3605.51 | 0.08 | ||
3 | 111,676,064 | 3603.92 | 0.05 | ||
4 | 111,193,998 | 3605.55 | 0.05 | ||
5 | 111,616,979 | 3605.57 | 0.07 | ||
65 | 1 | 111,943,020 | 3600.73 | 7.03 | |
2 | 112,109,654 | 3603.69 | 6.85 | ||
3 | 112,178,272 | 3604.25 | 6.94 | ||
4 | 111,723,484 | 3606.13 | 6.98 | ||
5 | 112,352,265 | 3603.52 | 6.83 |
(USD/Ton) | Objective Value (USD) |
---|---|
450 | 18,864,030 |
550 | 18,816,661 |
650 | 18,769,291 |
750 | 18,721,921 |
850 | 18,674,552 |
950 | 18,627,182 |
1050 | 18,579,813 |
Relative Change of Charter Cost | Objective Value (USD) | Relative Change of Charter Cost | Objective Value (USD) |
---|---|---|---|
−60% | 19,018,953 | 10% | 18,690,653 |
−50% | 18,972,053 | 20% | 18,643,753 |
−40% | 18,925,153 | 30% | 18,596,853 |
−30% | 18,878,253 | 40% | 18,549,953 |
−20% | 18,831,353 | 50% | 18,503,053 |
−10% | 18,784,453 | 60% | 18,456,153 |
No. | (n Mile/Hour) | (n Mile/Hour) | (n Mile/Hour) | Objective Value (USD) |
---|---|---|---|---|
1 | 6 | 7 | 8 | 18,549,953 |
2 | 8 | 9 | 10 | 18,724,714 |
3 | 10 | 11 | 12 | 18,737,553 |
4 | 12 | 14 | 15 | 18,737,553 |
5 | 14 | 16 | 17 | 18,737,553 |
6 | 16 | 18 | 19 | 18,737,553 |
7 | 18 | 20 | 21 | 18,737,553 |
8 | 20 | 22 | 23 | 18,737,553 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Zhang, H.; Wang, S.; Zhen, L. Mathematical Optimization of Carbon Storage and Transport Problem for Carbon Capture, Use, and Storage Chain. Mathematics 2023, 11, 2765. https://doi.org/10.3390/math11122765
Wu Y, Zhang H, Wang S, Zhen L. Mathematical Optimization of Carbon Storage and Transport Problem for Carbon Capture, Use, and Storage Chain. Mathematics. 2023; 11(12):2765. https://doi.org/10.3390/math11122765
Chicago/Turabian StyleWu, Yiwei, Hongyu Zhang, Shuaian Wang, and Lu Zhen. 2023. "Mathematical Optimization of Carbon Storage and Transport Problem for Carbon Capture, Use, and Storage Chain" Mathematics 11, no. 12: 2765. https://doi.org/10.3390/math11122765
APA StyleWu, Y., Zhang, H., Wang, S., & Zhen, L. (2023). Mathematical Optimization of Carbon Storage and Transport Problem for Carbon Capture, Use, and Storage Chain. Mathematics, 11(12), 2765. https://doi.org/10.3390/math11122765