Literature Review on Integrating Generalized Space-Time Autoregressive Integrated Moving Average (GSTARIMA) and Deep Neural Networks in Machine Learning for Climate Forecasting
Abstract
:1. Introduction
- RQ1: How does the integration of the GSTARIMA–DNN model using the ML technique work?
- RQ2: How does the integration of the GSTARIMA–DNN model utilizing ML contribute to climate data forecasting?
- RQ3: How does the GSTARIMA–DNN model compare to the GSTARIMA model in forecasting climate data?
2. Materials and Methods
2.1. Literature Review and Information Analysis
2.2. Dataset Analysis
2.3. Theoretical Background
2.3.1. Space-Time Autoregressive (STAR)
2.3.2. Generalized Space-Time Autoregressive (GSTAR)
2.3.3. Generalized Space-Time Autoregressive Integrated Moving Average (GSTARIMA)
2.3.4. Machine Learning (ML)
2.3.5. Multilayer Perceptron (MLP)
2.3.6. Convolutional Neural Network (CNN)
2.3.7. Data Analytics Lifecycle
- Stage 1—Discovery (Problem Formulation): This stage involved conducting a literature review to prepare for problem analysis in research. It entailed gathering resources such as references, technology, time, and data. The important activities in this stage included creating a problem framework as an analytical challenge to be addressed in the next stage and formulating initial hypotheses to test and explore the data.
- Stage 2—Data Preparation: Data pre-processing was carried out in this stage, involving initial data analysis. It encompassed processes such as data cleaning, extraction, transformation, and integration, preparing the data to be collected in the database repository as a prerequisite for model preparation.
- Stage 3—Model Planning: This stage focused on planning the model by determining the methods, techniques, and research flow to be followed during the model-building stage.
- Stage 4—Model Building: At this stage, the research was directed towards developing datasets for training purposes, testing, and producing output models. Consideration was given to whether the existing device supported running the model efficiently, such as fast hardware and parallel processing capabilities.
- Stage 5—Communicating Results: This stage involved testing the data model and its changes with the user or in a laboratory setting, to determine whether the output aligned with the development criteria. If the model did not meet the criteria, an evaluation was conducted, and the process could return to the previous stage for further refinement.
- Stage 6—Operationalizing (Operationalization): This stage entailed submitting the final report, directions, codes, and technical documents. In addition, it could involve implementing the model as a pilot project to ensure a broader application.
3. Results
4. Discussion
4.1. Gaps in the Literature
4.2. Conceptual Model
4.2.1. Data Analytics Lifecycle for Climate Dataset
4.2.2. Integration of GSTARIMA with DNN for Forecasting
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Box, G.E.P.; Jenkins, G.M. Time Series Analysis Forecasting and Control; Holden-Day Inc.: Oakland, CA, USA, 1976. [Google Scholar]
- Pfeifer, P.; Deutsch, S. A Three-Stage Iterative Procedure for Space-Time Modeling. Technometrics 1980, 22, 35–47. [Google Scholar] [CrossRef]
- Borovkova, S.A.; Lopuhaa, H.P.; Ruchjana, B.N. Generalized STAR Model with Experimental Weights. In Proceedings of the 17th International Workshop on Statistical Modeling, Trieste, Italy, 8–12 July 2002; pp. 139–147. [Google Scholar]
- Min, X.; Hu, J.; Zhang, Z. Urban Traffic Network Modeling and Short-Term Traffic Flow Forecasting Based on GSTARIMA Model. In Proceedings of the IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, Funchal, Portugal, 19–22 September 2010; pp. 1535–1540. [Google Scholar]
- Akbar, M.S.; Setiawan; Suhartono; Ruchjana, B.N.; Prastyo, D.D.; Muhaimin, A.; Setyowati, E. A Generalized Space-Time Autoregressive Moving Average (GSTARMA) Model for Forecasting Air Pollutant in Surabaya. In Proceedings of the Journal of Physics: Conference Series, Surabaya, Indonesia, 19 October 2020; Volume 1490. [Google Scholar]
- Hu, J.; Wang, S.; Mao, J. Short Time PM2.5 Prediction Model for Beijing-Tianjin-Hebei Region Based on Generalized Space Time Autoregressive (GSTAR). In Proceedings of the IOP Conference Series: Earth and Environmental Science, Ancona, Italy, 1–2 October 2019; Volume 358. [Google Scholar]
- Jamilatuzzahro; Caraka, R.E.; Herliansyah, R.; Asmawati, S.; Sari, D.M.; Pardamean, B. Generalized Space Time Autoregressive of Chili Prices. In Proceedings of the 2018 International Conference on Information Management and Technology, ICIMTech, Jakarta, Indonesia, 3–5 September 2018; pp. 291–296. [Google Scholar]
- Handajani, S.S.; Pratiwi, H.; Susanti, Y.; Subanti, S.; Respatiwulan; Hartatik. Rainfall Model on Area of Rice Production in Sragen, Karanganyar and Klaten by Using Generalized Space Time Autoregressive (GSTAR). In Proceedings of the Journal of Physics: Conference Series, Surakarta, Indonesia, 6–7 December 2017; Volume 855. [Google Scholar]
- Andayani, N.; Sumertajaya, I.M.; Ruchjana, B.N.; Aidi, M.N. Comparison of GSTARIMA and GSTARIMA-X Model by Using Transfer Function Model Approach to Rice Price Data. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Bogor, Indonesia, 19–20 October 2018; Volume 187. [Google Scholar]
- Sulistyono, A.D.; Hartawati; Iriany, A.; Suryawardhani, N.W.; Iriany, A. Rainfall Forecasting in Agricultural Areas Using GSTAR-SUR Model. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Yogyakarta, Indonesia, 30–31 July 2020; Volume 458. [Google Scholar]
- Abdullah, A.S.; Matoha, S.; Lubis, D.A.; Falah, A.N.; Jaya, I.G.N.M.; Hermawan, E.; Ruchjana, B.N. Implementation of Generalized Space Time Autoregressive (GSTAR)-Kriging Model for Predicting Rainfall Data at Unobserved Locations in West Java. Appl. Math. Inf. Sci. 2018, 12, 607–615. [Google Scholar] [CrossRef]
- Prasetiyowati, S.S.; Sibaroni, Y.; Carolina, S. Prediction and Mapping of Air Pollution in Bandung Using Generalized Space Time Autoregressive and Simple Kriging. In Proceedings of the 2020 International Conference on Data Science and Its Applications, ICoDSA, Bandung, Indonesia, 5–6 August 2020. [Google Scholar]
- Kumar, R.R.; Sarkar, K.A.; Dhakre, D.S.; Bhattacharya, D. A Hybrid Space–Time Modelling Approach for Forecasting Monthly Temperature. Environ. Model. Assess. 2022, 28, 317–330. [Google Scholar] [CrossRef]
- Zhao, Y.; Ge, L.; Zhou, Y.; Sun, Z.; Zheng, E.; Wang, X.; Huang, Y.; Cheng, H. A New Seasonal Difference Space-Time Autoregressive Integrated Moving Average (SD-STARIMA) Model and Spatiotemporal Trend Prediction Analysis for Hemorrhagic Fever with Renal Syndrome (HFRS). PLoS ONE 2018, 13, e0207518. [Google Scholar] [CrossRef]
- Xu, L.; Chen, N.; Chen, Z.; Zhang, C.; Yu, H. Spatiotemporal Forecasting in Earth System Science: Methods, Uncertainties, Predictability and Future Directions. Earth-Sci. Rev. 2021, 222, 103828. [Google Scholar] [CrossRef]
- Agoua, X.G.; Girard, R.; Kariniotakis, G. Short-Term Spatio-Temporal Forecasting of Photovoltaic Power Production. IEEE Trans. Sustain. Energy 2018, 9, 538–546. [Google Scholar] [CrossRef] [Green Version]
- Ham, Y.G.; Kim, J.H.; Luo, J.J. Deep Learning for Multi-Year ENSO Forecasts. Nature 2019, 573, 568–572. [Google Scholar] [CrossRef]
- Chattopadhyay, A.; Hassanzadeh, P.; Pasha, S. Predicting Clustered Weather Patterns: A Test Case for Applications of Convolutional Neural Networks to Spatio-Temporal Climate Data. Sci. Rep. 2020, 10, 1317. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Wang, Q.; Liu, C.; Wang, J.; Liu, H.; Li, J. Relation Patterns Extraction from High-Dimensional Climate Data with Complicated Multi-Variables Using Deep Neural Networks. Appl. Intell. 2023, 53, 3124–3135. [Google Scholar] [CrossRef]
- Li, W.; Gao, X.; Hao, Z.; Sun, R. Using Deep Learning for Precipitation Forecasting Based on Spatio-Temporal Information: A Case Study. Clim. Dyn. 2022, 58, 443–457. [Google Scholar] [CrossRef]
- Zhang, Q.; Han, Y.; Li, V.O.K.; Lam, J.C.K. Deep-AIR: A Hybrid CNN-LSTM Framework for Fine-Grained Air Pollution Estimation and Forecast in Metropolitan Cities. IEEE Access. 2022, 10, 55818–55841. [Google Scholar] [CrossRef]
- Qi, Y.; Li, Q.; Karimian, H.; Liu, D. A Hybrid Model for Spatiotemporal Forecasting of PM 2.5 Based on Graph Convolutional Neural Network and Long Short-Term Memory. Sci. Total Environ. 2019, 664, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Wang, X.; Zhang, W.; Zhu, X.; Li, A.; Yang, C. A Hybrid CNN-LSTM Model for Typhoon Formation Forecasting. Geoinformatica 2019, 23, 375–396. [Google Scholar] [CrossRef]
- Velo, R.; López, P.; Maseda, F. Wind Speed Estimation Using Multilayer Perceptron. Energy Convers. Manag. 2014, 81, 1–9. [Google Scholar] [CrossRef]
- Deo, R.C.; Ghorbani, M.A.; Samadianfard, S.; Maraseni, T.; Bilgili, M.; Biazar, M. Multi-Layer Perceptron Hybrid Model Integrated with the Firefly Optimizer Algorithm for Windspeed Prediction of Target Site Using a Limited Set of Neighboring Reference Station Data. Renew. Energy 2018, 116, 309–323. [Google Scholar] [CrossRef]
- Manley, K.; Egoh, B.N. Mapping and Modeling the Impact of Climate Change on Recreational Ecosystem Services Using Machine Learning and Big Data. Environ. Res. Lett. 2022, 17, 054025. [Google Scholar] [CrossRef]
- Zhang, X.; Jin, Q.; Yu, T.; Xiang, S.; Kuang, Q.; Prinet, V.; Pan, C. Multi-Modal Spatio-Temporal Meteorological Forecasting with Deep Neural Network. ISPRS J. Photogramm. Remote Sens. 2022, 188, 380–393. [Google Scholar] [CrossRef]
- Toharudin, T.; Caraka, R.E.; Yasin, H.; Pardamean, B. Evolving Hybrid Generalized Space-Time Autoregressive Forecasting with Cascade Neural Network Particle Swarm Optimization. Atmosphere 2022, 13, 875. [Google Scholar] [CrossRef]
- Hiben, Y.G.; Kahsay, M.B.; Lauwaert, J. Hourly Solar Radiation Estimation Using Data Mining and Generalized Regression Neural Network Models. In Proceedings of the American Solar Energy Society National Solar Conference 2020 Proceedings, Online, 24–25 June 2020; pp. 155–164. [Google Scholar]
- Setyowati, E.; Suhartono; Prastyo, D.D. A Hybrid Generalized Space-Time Autoregressive-Elman Recurrent Neural Network Model for Forecasting Space-Time Data with Exogenous Variables. In Proceedings of the Journal of Physics: Conference Series, Makassar, Indonesia, 9–10 October 2021; Volume 1752. [Google Scholar]
- Kumar, B.; Chattopadhyay, R.; Singh, M.; Chaudhari, N.; Kodari, K.; Barve, A. Deep Learning–Based Downscaling of Summer Monsoon Rainfall Data over Indian Region. Theor. Appl. Climatol. 2021, 143, 1145–1156. [Google Scholar] [CrossRef]
- Su, X.; Li, T.; An, C.; Wang, G. Prediction of Short-Time Cloud Motion Using a Deep-Learning Model. Atmosphere 2020, 11, 1151. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Avello, M. Status of the Research in Fitness Apps: A Bibliometric Analysis. Telemat. Inform. 2020, 57, 101506. [Google Scholar] [CrossRef] [PubMed]
- Kou, W.-J.; Wang, X.-Q.; Li, Y.; Ren, X.-H.; Sun, J.-R.; Lei, S.-Y.; Liao, C.-Y.; Wang, M.-X. Research Trends of Posttraumatic Growth from 1996 to 2020: A Bibliometric Analysis Based on Web of Science and CiteSpace. J. Affect. Disord. Rep. 2021, 3, 100052. [Google Scholar] [CrossRef]
- Lungu, E.; Tang, A.; Trop, I.; Soulez, G.; Bureau, N.J. Current State of Bibliometric Research on the Scholarly Activity of Academic Radiologists. Acad. Radiol. 2020, 29, 107–118. [Google Scholar] [CrossRef] [PubMed]
- El Mohadab, M.; Bouikhalene, B.; Safi, S. Bibliometric Method for Mapping the State of the Art of Scientific Production in COVID-19. Chaos Solitons Fractals 2020, 139, 110052. [Google Scholar] [CrossRef]
- Rejeb, A.; Simske, S.; Rejeb, K.; Treiblmaier, H.; Zailani, S. Internet of Things Research in Supply Chain Management and Logistics: A Bibliometric Analysis. Internet Things 2020, 12, 100318. [Google Scholar] [CrossRef]
- Chàfer, M.; Cabeza, L.F.; Pisello, A.L.; Tan, C.L.; Wong, N.H. Trends and Gaps in Global Research of Greenery Systems through a Bibliometric Analysis. Sustain. Cities Soc. 2020, 65, 102608. [Google Scholar] [CrossRef]
- Zhang, P.G. Time Series Forecasting Using a Hybrid ARIMA and Neural Network Model. Neurocomputing 2003, 50, 159–175. [Google Scholar] [CrossRef]
- Cho, S.B.; Lee, Y.W. Rice Yield Modeling in China Using Climate Data with Deep Neural Network. In Proceedings of the 40th Asian Conference on Remote Sensing, ACRS 2019: Progress of Remote Sensing Technology for Smart Future, Daejeon, Korea, 14–18 October 2020. [Google Scholar]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future Directions. J. Big Data 2021, 8, 53. [Google Scholar] [CrossRef]
- Gardner, M.W.; Dorling, S.R. Artificial Neural Networks (the Multilayer Perceptron)—A Review of Applications in the Atmospheric Sciences. Atmos. Environ. 1998, 32, 2627–2636. [Google Scholar] [CrossRef]
- Hermawan, E.; Lubis, S.W.; Harjana, T.; Purwaningsih, A.; Risyanto; Ridho, A.; Andarini, D.F.; Ratri, D.N.; Widyaningsih, R. Large-Scale Meteorological Drivers of the Extreme Precipitation Event and Devastating Floods of Early-February 2021 in Semarang, Central Java, Indonesia. Atmosphere 2022, 13, 1092. [Google Scholar] [CrossRef]
- EMC Education Services. Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data; John Wiley & Sons, Inc.: Indianapolis, IN, USA, 2015; ISBN 978-1-118-87613-8. [Google Scholar]
- Singh, A.; Kushwaha, S.; Alarfaj, M.; Singh, M. Comprehensive Overview of Backpropagation Algorithm for Digital Image Denoising. Electronics 2022, 11, 1590. [Google Scholar] [CrossRef]
- Witten, I.; Frank, E. Data Mining: Practical Machine Learning Tools and Techniques; Morgan Kau: San Francisco, CA, USA, 2005. [Google Scholar]
- Nithya, B.; Ilango, V. Predictive Analytics in Health Care Using Machine Learning Tools and Techniques. In Proceedings of the 2017 International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 15–16 June 2017; pp. 492–499. [Google Scholar]
- Xu, L.; Chen, N.; Zhang, X.; Chen, Z.; Hu, C.; Wang, C. Improving the North American Multi-Model Ensemble (NMME) Precipitation Forecasts at Local Areas Using Wavelet and Machine Learning. Clim. Dyn. 2019, 53, 601–615. [Google Scholar] [CrossRef]
- Srivastava, A.; Saini, S.; Gupta, D. Comparison of Various Machine Learning Techniques and Their Uses in Different Fields. In Proceedings of the 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 12–14 June 2019; pp. 81–86. [Google Scholar]
- Jordan, M.I.; Mitchell, T.M. Machine Learning: Trends, Perspectives, and Prospects. Science 2015, 80, 255–260. [Google Scholar] [CrossRef]
- Mishra, B.K.; Kumar, V.; Panda, S.K.; Tiwari, P. Handbook of Research for Big Data: Concepts and Technique; Taylor & Francis: Abingdon, UK, 2022. [Google Scholar]
- Gurbuz, S.Z. Deep Neural Network Design for Radar Applications; Gurbuz, S.Z., Ed.; SciTech Publishing: Raleigh, NC, USA, 2020. [Google Scholar]
- Atkinson, P.M.; Tatnall, A.R.L. Introduction Neuralnetworks in Remote Sensing. Int. J. Remote Sens. 1997, 18, 699–709. [Google Scholar] [CrossRef]
- Dos Santos, C.; Gatti, M. Deep Convolutional Neural Networks for Sentiment Analysis of Short Texts. In Proceedings of the the 25th International Conference on Computational Linguistics: Technical Papers, Dublin, Ireland, 23–29 August 2014; pp. 69–78. [Google Scholar]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applied to Document Recognition. In Proceedings of the IEEE; IEEE: Piscataway, NJ, USA, 1998; Volume 86, pp. 2278–2324. [Google Scholar]
- Rahul, K.; Banyal, R.K. Data Life Cycle Management in Big Data Analytics; Elsevier B.V.: Berlin/Heidelberg, Germany, 2020; Volume 173, pp. 364–371. [Google Scholar]
- Jiao, X.; Li, X.; Lin, D.; Xiao, W. A Graph Neural Network Based Deep Learning Predictor for Spatio-Temporal Group Solar Irradiance Forecasting. IEEE Trans. Ind. Inform. 2022, 18, 6142–6149. [Google Scholar] [CrossRef]
- Nikezić, D.P.; Ramadani, U.R.; Radivojević, D.S.; Lazović, I.M.; Mirkov, N.S. Deep Learning Model for Global Spatio-Temporal Image Prediction. Mathematics 2022, 10, 3392. [Google Scholar] [CrossRef]
- Zou, M.Z.; Holjevac, N.; Dakovic, J.; Kuzle, I.; Langella, R.; Di Giorgio, V.; Djokic, S.Z. Bayesian CNN-BiLSTM and Vine-GMCM Based Probabilistic Forecasting of Hour-Ahead Wind Farm Power Outputs. IEEE Trans. Sustain. Energy 2022, 13, 1169–1187. [Google Scholar] [CrossRef]
- Marco, Z.; Elena, A.; Anna, S.; Silvia, T.; Andrea, C. Spatio-Temporal Cross-Validation to Predict Pluvial Flood Events in the Metropolitan City of Venice. J. Hydrol. 2022, 612, 128150. [Google Scholar] [CrossRef]
- Li, Y.; Wang, W.; Wang, G.; Tan, Q. Actual Evapotranspiration Estimation over the Tuojiang River Basin Based on a Hybrid CNN-RF Model. J. Hydrol. 2022, 610, 127788. [Google Scholar] [CrossRef]
- Kong, W.J.; Li, H.C.; Yu, C.; Xia, J.J.; Kang, Y.Y.; Zhang, P.W. A Deep Spatio-Temporal Forecasting Model for Multi-Site Weather Prediction Post-Processing. Commun. Comput. Phys. 2022, 31, 131–153. [Google Scholar] [CrossRef]
- Zhang, Y.; Gu, Z.; Thé, J.V.G.; Yang, S.X.; Gharabaghi, B. The Discharge Forecasting of Multiple Monitoring Station for Humber River by Hybrid LSTM Models. Water 2022, 14, 1794. [Google Scholar] [CrossRef]
- Orescanin, M.; Petkovic, V.; Powell, S.W.; Marsh, B.R.; Heslin, S.C. Bayesian Deep Learning for Passive Microwave Precipitation Type Detection. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4500705. [Google Scholar] [CrossRef]
- Anshuka, A.; Chandra, R.; Buzacott, A.J.V.; Sanderson, D.; van Ogtrop, F.F. Spatio Temporal Hydrological Extreme Forecasting Framework Using LSTM Deep Learning Model. Stoch. Environ. Res. Risk Assess. 2022, 36, 3467–3485. [Google Scholar] [CrossRef]
- Suhartono; Nahdliyah, N.; Akbar, M.S.; Salehah, N.A.; Choiruddin, A. A MGSTAR: An Extension of the Generalized Space-Time Autoregressive Model. In Proceedings of the Journal of Physics: Conference Series, Makassar, Indonesia, 9–10 October 2021; Volume 1752. [Google Scholar]
- Böhm, C.; Schween, J.H.; Reyers, M.; Maier, B.; Löhnert, U.; Crewell, S. Toward a Climatology of Fog Frequency in the Atacama Desert via Multispectral Satellite Data and Machine Learning Techniques. J. Appl. Meteorol. Climatol. 2021, 60, 1149–1169. [Google Scholar] [CrossRef]
- Christoforou, E.; Emiris, I.Z.; Florakis, A.; Rizou, D.; Zaharia, S. Spatio-Temporal Deep Learning for Day-Ahead Wind Speed Forecasting Relying on WRF Predictions. Energy Syst. 2021, 14, 473–493. [Google Scholar] [CrossRef]
- Da Silva, C.C.; de Lima, C.L.; da Silva, A.C.G.; Moreno, G.M.M.; Musah, A.; Aldosery, A.; Dutra, L.; Ambrizzi, T.; Borges, I.V.G.; Tunali, M.; et al. Forecasting Dengue, Chikungunya and Zika Cases in Recife, Brazil: A Spatio-Temporal Approach Based on Climate Conditions, Health Notifications and Machine Learning. Res. Soc. Dev. 2021, 10, e452101220804. [Google Scholar] [CrossRef]
- Guillaumin, A.P.; Zanna, L. Stochastic-Deep Learning Parameterization of Ocean Momentum Forcing. J. Adv. Model. Earth Syst. 2021, 13, e2021MS002534. [Google Scholar] [CrossRef]
- Steffenel, L.A.; Anabor, V.; Kirsch Pinheiro, D.; Guzman, L.; Dornelles Bittencourt, G.; Bencherif, H. Forecasting Upper Atmospheric Scalars Advection Using Deep Learning: An O3 Experiment. Mach. Learn. 2021, 112, 765–778. [Google Scholar] [CrossRef]
- Kimura, N.; Ishida, K.; Baba, D. Surface Water Temperature Predictions at a Mid-Latitude Reservoir under Long-Term Climate Change Impacts Using a Deep Neural Network Coupled with a Transfer Learning Approach. Water 2021, 13, 1109. [Google Scholar] [CrossRef]
- Geng, H.; Wang, T. Spatiotemporal Model Based on Deep Learning for Enso Forecasts. Atmosphere 2021, 12, 810. [Google Scholar] [CrossRef]
- Liu, D.; Mishra, A.K.; Yu, Z.B.; Lu, H.S.; Li, Y.J. Support Vector Machine and Data Assimilation Framework for Groundwater Level Forecasting Using GRACE Satellite Data. J. Hydrol. 2021, 603, 126929. [Google Scholar] [CrossRef]
- Al-Shargabi, A.A.; Almhafdy, A.; Ibrahim, D.M.; Alghieth, M.; Chiclana, F. Tuning Deep Neural Networks for Predicting Energy Consumption in Arid Climate Based on Buildings Characteristics. Sustainability 2021, 13, 12442. [Google Scholar] [CrossRef]
- Adewoyin, R.A.; Dueben, P.; Watson, P.; He, Y.; Dutta, R. TRU-NET: A Deep Learning Approach to High Resolution Prediction of Rainfall. Mach. Learn. 2021, 110, 2035–2062. [Google Scholar] [CrossRef]
- Rajakumari, D.K.; Priyanka, V. Air Pollution Prediction in Smart Cities by Using Machine Learning Techniques. Int. J. Innov. Technol. Explor. Eng. 2020, 9, 1272–1279. [Google Scholar] [CrossRef]
- Huang, W.; Li, Y.; Huang, Y. Deep Hybrid Neural Network and Improved Differential Neuroevolution for Chaotic Time Series Prediction. IEEE Access 2020, 8, 159552–159565. [Google Scholar] [CrossRef]
- Chirayath, V.; Li, A.; Torres-Perez, J.; Segal-Rozenhaimer, M.; Van Den Bergh, J. NASA NeMO-Net—A Neural Multimodal Observation and Training Network for Marine Ecosystem Mapping at Diverse Spatiotemporal Scales; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2020; pp. 3633–3636. [Google Scholar]
- Ziyabari, S.; Du, L.; Biswas, S. A Spatio-Temporal Hybrid Deep Learning Architecture for Short-Term Solar Irradiance Forecasting. In Proceedings of the Conference Record of the IEEE Photovoltaic Specialists Conference, Calgary, AB, Canada, 15 June–21 August 2020; Volume 2020, pp. 0833–0838. [Google Scholar]
- Zhang, W.; Liu, H.; Li, P.; Han, L. A Multi-Task Two-Stream Spatiotemporal Convolutional Neural Network for Convective Storm Nowcasting; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2020; pp. 3953–3960. [Google Scholar]
- Ding, Y.; Zhu, Y.; Wu, Y.; Jun, F.; Cheng, Z. Spatio-Temporal Attention Lstm Model for Flood Forecasting; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2019; pp. 458–465. [Google Scholar]
- Pusporani, E.; Suhartono; Prastyo, D.D. Hybrid Multivariate Generalized Space-Time Autoregressive Artificial Neural Network Models to Forecast Air Pollution Data at Surabaya. In Proceedings of the AIP Conference Proceedings, Surakarta, Indonesia, 26–28 July 2019; Volume 2194. [Google Scholar]
- Thongniran, N.; Vateekul, P.; Jitkajornwanich, K.; Lawawirojwong, S.; Srestasathiern, P. Spatio-Temporal Deep Learning for Ocean Current Prediction Based on HF Radar Data. In Proceedings of the 2019 16th International Joint Conference on Computer Science and Software Engineering (JCSSE), Chonburi, Thailand, 10–12 July 2019; pp. 254–259. [Google Scholar]
- Wilms, H.; Cupelli, M.; Monti, A.; Gross, T. Exploiting Spatio-Temporal Dependencies for RNN-Based Wind Power Forecasts; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2019; pp. 921–926. [Google Scholar]
- Cui, Y.K.; Xiong, W.T.; Hu, L.; Liu, R.H.; Chen, X.; Geng, X.Z.; Lv, F.; Fan, W.J.; Hong, Y. Applying a Machine Learning Method to Obtain Long Time and Spatio-Temporal Continuous Soil Moisture over the Tibetan Plateau. In Proceedings of the 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 6986–6989. [Google Scholar]
- Saikhu, A.; Arifin, A.Z.; Fatichah, C. Non-Linear Spatio-Temporal Input Selection for Rainfall Forecasting Using Recurrent Neural Networks. In Proceedings of the 2018 International Seminar on Intelligent Technology and Its Applications (ISITIA), Bali, Indonesia, 30–31 August 2018; pp. 351–356. [Google Scholar]
- Astuti, D.; Ruchjana, B.N.; Soemartini. Generalized Space Time Autoregressive with Exogenous Variable Model and Its Application. In Proceedings of the Journal of Physics: Conference Series, Bali, Indonesia, 25–29 July 2017; Volume 893. [Google Scholar]
- Ippoliti, L. On-Line Spatio-Temporal Prediction by a State Space Representation of the Generalised Space Time Autoregressive Model. Metron 2001, 59, 157–168. [Google Scholar]
- Słomska-Przech, K.; Panecki, T.; Pokojski, W. Heat Maps: Perfect Maps for Quick Reading? Comparing Usability of Heat Maps with Different Levels of Generalization. ISPRS Int. J. Geo-Inf. 2021, 10, 562. [Google Scholar] [CrossRef]
Code | Keywords | Scopus | Web of Science | Dimensions | EBSCO | Total |
---|---|---|---|---|---|---|
A | (“GSTAR” OR “Generalized Space-Time Autoregressive” OR “Spatio Temporal”) AND (“Machine Learning” OR “Deep Learning” OR “Multivariate Time Series”) | 4556 | 2833 | 2312 | 1182 | 10,883 |
B | (“Neural Network” OR “Deep Neural Network” OR “Feed Forward Neural Network” OR “Multilayer Perceptron” OR “Convolutional Neural Network” OR “Autoregressive Integrated Moving Average”) | 796,162 | 489,068 | 226,657 | 163,955 | 1,675,842 |
C | (“Data Analytics Lifecycle” OR “Climate” OR “Weather” OR “Function Derivative Approximation” OR “Ordinary Differential Equation”) | 1,108,037 | 1,032,136 | 619,507 | 585,205 | 3,344,885 |
D | A AND B AND C | 250 | 141 | 138 | 46 | 575 |
Reference | Model | Dataset | Location | Content Performance Analysis | |||||
---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | MAPE | Accuracy | Application | |||||
(Zheng et al., 2023) | [19] | DN | ECMWF (https://atmosphere.copernicus.eu/ (access on 22 May 2023) | - | - | - | - | RNN = 80.32% SB-DNN = 80.06 | Climate prediction |
(Jiao et al., 2022) | [58] | SP, DN | Solar Radiation, 17 locations, 48,989 data | Hawaii | - | CNN + LSTM = 0.013, GSINN = 0.0047 | 2.86 1.06 | - | Solar radiation prediction |
(Manley et al., 2022) | [26] | ML, BD | Climate data temporal, ~750 locations (2005–2017) | California, USA | 0.924 | - | - | - | Predict the pattern of suitable recreation in summer |
(Nikezić et al., 2022) | [59] | SP, DN, BD | Image Satellite of Aerosol (NASA), 21 months | Earth surface | - | 0.3199 | - | 90% | Aerosol movement forecasting |
(X. Zhang et al., 2022) | [27] | SP, ML | LAPS = 2018–2021, ERA5 1979–2021 | China and Southeast Asia | - | LAPS Temp = 0.37, v-wind = 0.96 u-wind = 0.88 RH = 0.79 ERA5 Temp = 0.32, v-wind = 0.96 u-wind = 0.87 RH = 0.76 | - | - | Weather prediction |
(W. Li et al., 2022) | [20] | SP, DN | Rainfall, temp, RH, wind, dewpoint (2013–2019) | Gansu, China | - | - | - | Rainfall (response) variable = 85% | Rainfall prediction |
(Kumar et al., 2022) | [13] | SP | NASA: temp max, temp avg (1981–2020) | Bihar, India in 8 locations | - | - | STARMA temp avg = 10.54, temp max = 3.08 STARMA—GARCH temp avg = 10.36%, Temp max = 3.06% | - | Comparison of STARMA–GARCH and STARMA |
(Zou et al., 2022) | [60] | DN | Image data of wind speed and direction, air density | Croatia (Bruska and Jelinak) | - | Bayesian CNN–BiLSTM dan Vine–GMCM (Bruska = 0.093, Jelinak = 0.100) | - | - | Weather prediction |
(Marco et al., 2022) | [61] | SP, ML, BD | Image data, 60 flood events from 1995 to 2020 | Venice, Italia (188 rainfall stations) | - | - | - | Logistic Regression = 0.860, Neural Network = 0.843, Random Forest = 0.844 | Prediction of flood mitigation due to climate change |
(Y. Li et al., 2022) | [62] | ML | Weather data from 1980 to 2020 | Tuojiang river basin, China | - | CNN–RF = 6.29, CNN–SVM = 16.12, CNN = 10.30, RF = 8.12, SVM = 9.20 | - | CNN–RF = 0.97, CNN–SVM = 0.85, CNN = 0.94, RF = 0.96, SVM = 0.95 | Evaporation predictions affecting the water, carbon, and energy cycles |
(Kong et al., 2022) | [63] | SP, RN | Weather data (2015–2015) 1 h interval, prediction every 3 h | Beijing, China (226 observation station) | - | DeepSTF = 2.41, CNNseq2seq = 2.50, AttnSeq2seq = 2.54 | - | DeepSTF = 70.03%, CNNseq2seq = 68.41%, AttnSeq2seq = 67.45% | Deep Spatio-Temporal Forecasting (DeepSTF) |
(Y. Zhang et al., 2022) | [64] | DN, RN | River flow data (2012 to 2017) 1 h interval. | Humber River, Ontario, Canada | - | LSTM = 8.48, ConvLSTM = 8.73, CNN–LSTM = 9.24, STA–LSTM = 7.99 | - | - | Early Warning Flood forecasting |
(Orescanin et al., 2022) | [65] | ML | Rainfall Satellite-borne passive microwave (PMW) monthly data (2017–1018) | Orbit di Laut Atlantic | - | - | - | Bay.ResNet56 = 90% Bay.ResNet38 = 93% | Rainfall prediction |
(Anshuka et al., 2022) | [66] | SP, DN | Image data NOAA 1980 to 2020 | Southwest Pacific. 30,000 measuring stations | Train multivariate SST = 0.49, Test Multivariate SST = 0.6 | Mean = 0.75 for 22 locations | Extreme rainfall prediction | ||
(Suhartono et al., 2021) | [67] | GS | CO, PM10 from 14 January 2017 to 14 February 2018 | Surabaya, Indonesia | - | ARIMA = 0.22, MGSTAR = 4.99 | ARIMA = 29.51%, MGSTAR = 116.94% | - | Air pollution prediction |
(Böhm et al., 2021) | [68] | ML | Numerical conversion image satellite data. 2017–2019 | Chili | - | Each location < 40% detected fog frequency | - | - | Fog detection for freshwater sources in desert areas |
(Christoforou et al., 2021) | [69] | DN | Daily wind speed data from 5 locations from 1 January 2013 to 31 December 2014 | Greece | - | WRF = 2.3, DCNN = 0.997 to 1.803 | WRF = 26.14%, DSTNN = 14% | - | Prediction of wind speed for electricity consumption |
(Kong et al., 2022) | [63] | SP, DN | Weather data (2015 to 2017) data interval of 1 h | Beijing, China | - | Temp = 2.41 | - | Temp = 70.03%, RH = 70.34%, Wind = 84.44%, Wind breeze = 77.05% | Weather Prediction |
(Silva et al., 2021) | [70] | SP, DN | Wind speed, temperature, and pluviometry in 2013 to 2016 | Brazil | - | LR = 21.73 MLP (10 neuron) = 4.15 | - | - | Detect the spread of dengue fever using climate data |
(Guillaumin et al., 2021) | [71] | DN | CO2 gas satellite data, for ~7000 days (20 years) | Image of Earth’s sea surface | 85.5% | - | - | - | Predict the distribution of CO2 |
(Steffenel et al., 2021) | [72] | SP, DN | Ozone data from 1980 to 2019, 6 h interval (ERA5)(58,500 observations) | South America, South Africa, and New Zealand | - | Min = 55.63 Max = 134.83 | - | - | Ozone prediction |
(Kimura et al., 2021) | [73] | SP, DN | Climate data (1984 to 2020) | Tokachi River, Hokkaido, Japan | LR = 0.744, LSTM = 0.839, LSTM (add data) = 0.871, LSTM (TL) = 0.853 | LR = 2.96, LSTM = 2.027, LSTM (add data) = 1.807 LSTM (TL) = 1.933 | - | - | Predict the correlation of air temperature with surface water temperature |
(Geng et al., 2021) | [74] | SP, DN, RN | ENSO: (CMIP5) (1864 to 2004) for training, (GODAS) (1994 to 2010) for validation | ENSO3.4, Pacific | - | CNN = 0.5603, DC–LSTM = 0.5558 | - | - | El Niño and Southern Oscillation (ENSO) Forecasting |
(Kumar et al., 2021) | [31] | DN, BD | Rainfall of ERA5 data (1975 to 2009) | India | DeepSD = 67 SRCNN- = 68 | - | - | - | Rainfall prediction |
(Liu et al., 2021) | [75] | SP, ML | Climate data (GRACE dan USGS) (2007 to 2016) | Northeastern United States | RGR ≥ 046 (t1 = 0.85, t2 = 0.85, t3 = 0.80). t = month | - | - | - | Prediction of groundwater level |
(Al-Shargabi et al., 2021) | [76] | DN | Cold energy, heat energy | Qasim Region, Saudi Arabia | DNN, LM algoritma (layer = 2, neuron = 20). 0.99 (train) 0.99 (test) | DNN, LM algoritma (layer = 2, neuron = 20). 0.119 (Heat) 3.604 (Cool) | - | - | Prediction of energy consumption due to climate change |
(Adewoyin et al., 2021) | [77] | DN | ERA5 as a target, E-OBS as input | UK | - | all seasons = 3.081, winter = 3.570, spring = 2.504. summers = 2.991, autumns = 3.215 | - | - | Climate modeling for flood anticipation due to extreme rains |
(Sulistyono et al., 2020) | [10] | GS | Rainfall (2005 to 2015) | East Java—Indonesia | - | Cross-correlation weight = 10.471. cross-covariance weight = 10.433 | - | - | Precipitation forecasting |
(Akbar et al., 2020) | [5] | GM | CO gas from January to December 2018 | Surabaya, Indonesia | - | GSTARMA–OLS = 0.20, GSTAR–OLS = 0.22 | - | - | Comparison of GSTAR and GSTARMA |
(Rajakumari et al., 2020) | [78] | ML | NO2, SO2, and O3 for 10 years, 6 h intervals | - | - | RNN = 3.378, ARIMA = 2.006 | - | - | Air pollution gas prediction model |
(Huang et al., 2020) | [79] | DN, RN | Hotspots = 3240 data, coal gas = 1464 data, Lorenz = 3000 data | - | Hot spots = 3.3834, coal gas = 0.0493 Lorentz = 0.0756 | Hot spots = 0.0419, coal gas = 0.1094 Lorentz = 0.0135 | - | Anticipation of nonlinear growth predictions on energy and weather data | |
(Chirayath et al., 2020) | [80] | SP, DN | Image data Coral reefs at sea level | Fiji | - | - | - | 84.3% | Biodiversity and Ecological predictions |
(Ziyabari et al., 2020) | [81] | SP, DN | Solar radiation from 2000 to 2017, 30-min intervals (National Solar Radiation Database) | Philadelphia, Pennsylvania | - | ResNet/LSTM (Adam, ReLU) = 0.068 | - | - | Predictions on Photovoltaic (PV) |
(Zhang et al., 2020) | [82] | SP, ML | Hurricane data (Japanese Himawari-8 satellite) | Beijing-Tianjin-Hebei, China | - | Predictions per 30 min ConvLSTM = 9.232, TrajGRU = 9.117, ConvGRU = 10.24 | - | - | Distribution of storm event information |
(Chen et al., 2019) | [23] | DN | Weather data area ~1000 km | Western Pacific (WP), Eastern Pacific (EP), dan North Atlantic (NA). | - | - | - | WP = 0.852 EP = 0.780 NA = 0.759 | Typhoon intensity forecasting |
(Ding et al., 2019) | [83] | SP, RN | Weather data, 3 h interval from May 2002 to January 2018 | Stream of the Lech River, Austria | - | FC = 85.74 SVM = 78.82 LSTM = 74.96 STA–LSTM = 66.02 | FC = 0.633 SVM = 0.720 LSTM = 0.750 STA–LSTM = 0.807 | Forecasting floods in watersheds | |
(Pusporani et al., 2019) | [84] | ML, GS | air pollution, 2018 | Surabaya, Indonesia | - | MGSTAR = 11.37 MGSTAR–FFNN = 5.49 MGSTAR–DLNN = 4.9 | Forecasting linear and nonlinear air pollution data | ||
(Thongniran et al., 2019) | [85] | SP, DN | Radar data in coastal bays from 2014 to 2016 | Thailand | - | CNN–GRU (U) = 4.509, CNN–GRU (V) = 7.405 | - | - | Prediction of sea surface |
(Wilms et al., 2019) | [86] | SP, DN | GEFCom dataset. Wind power targets | Australia (10 locations) | Conv LSTM524 = 0.7588, Conv LSTM254 = 0.7688 | Conv LSTM524 = 0.1697, Conv LSTM254 = 0.1661 | - | - | Forecasting wind power on turbines |
(Cui et al., 2019) | [87] | SP, ML | Soil moisture (EC-TEMP sensor) from 2002 to 2015 | Tibetan Plateau | 0.71 | 0.05 | - | - | Tibetan Plateau humidity forecast |
(Zhao et al., 2018) | [14] | SP | HFRS from 2005 to 2014 | Hubei Province, China | - | Luotian = 0.004 Zhongxiang = 0.003 Yicheng = 0.001 | Luotian = 10.3 Zhongxiang = 13.2 Yicheng = 9.12 | Hemorrhagic fever with renal syndrome (HFRS) | |
(Saikhu et al., 2018) | [88] | SP, DN | Rainfall, 1983 to 2016 | Surabaya, Indonesia | - | RNN Train = 48.69, Test = 94.46 | - | - | Rainfall prediction |
(Andayani et al., 2018) | [9] | GM, GX | Price of rice (BPS) from January 2007 to December 2014 | Java Island, Indonesia | - | GSTARIMA–X = 287.316, GSTAR = 313.872 | GSTARIMA–X = 3.059, GSTAR = 2.752 | Comparison predictions of GSTARIMA and GSTARIMA–X | |
(Abdullah et al., 2018) | [11] | GS | Monthly rainfall (1981 to 2016) | West Java, Indonesia | - | - | Majalengka-Kuningan = 8.97%, Majalengka-Ciamis = 12.51%, Kuningan-Ciamis = 7.72%, | - | Rainfall prediction |
(Astuti et al., 2017) | [89] | GS | CPO export volume from January 2004 to August 2015 | Sumatera, Indonesia | - | - | MSE (uniform weight = 9.30 × 103, Distance weight = 9.66 × 106) | - | Crude Palm Oil (CPO) export volume prediction |
(Handajani et al., 2017) | [8] | GS | Rainfall, 2004 to 2015 | Central Java, Indonesia | - | Sragen = 155.16 Karanganyar = 179.11 Klaten = 141.70 | - | - | Rainfall prediction |
(Ippoliti, 2001) | [90] | GS | Sulfur Dioxide (SO2) from 1 January 1999 to 31 December 1999 | Milan, Italia | 28 December 1999 to 31 December 1999 are 0.983, 0.855, 0.775, 0.802 | - | - | - | Prediction online monitoring of Sulfur Dioxide |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munandar, D.; Ruchjana, B.N.; Abdullah, A.S.; Pardede, H.F. Literature Review on Integrating Generalized Space-Time Autoregressive Integrated Moving Average (GSTARIMA) and Deep Neural Networks in Machine Learning for Climate Forecasting. Mathematics 2023, 11, 2975. https://doi.org/10.3390/math11132975
Munandar D, Ruchjana BN, Abdullah AS, Pardede HF. Literature Review on Integrating Generalized Space-Time Autoregressive Integrated Moving Average (GSTARIMA) and Deep Neural Networks in Machine Learning for Climate Forecasting. Mathematics. 2023; 11(13):2975. https://doi.org/10.3390/math11132975
Chicago/Turabian StyleMunandar, Devi, Budi Nurani Ruchjana, Atje Setiawan Abdullah, and Hilman Ferdinandus Pardede. 2023. "Literature Review on Integrating Generalized Space-Time Autoregressive Integrated Moving Average (GSTARIMA) and Deep Neural Networks in Machine Learning for Climate Forecasting" Mathematics 11, no. 13: 2975. https://doi.org/10.3390/math11132975
APA StyleMunandar, D., Ruchjana, B. N., Abdullah, A. S., & Pardede, H. F. (2023). Literature Review on Integrating Generalized Space-Time Autoregressive Integrated Moving Average (GSTARIMA) and Deep Neural Networks in Machine Learning for Climate Forecasting. Mathematics, 11(13), 2975. https://doi.org/10.3390/math11132975