Directional Ring Difference Filter for Robust Shape-from-Focus
Abstract
:1. Introduction
2. Proposed Focus Measure
2.1. Motivation
2.2. Method
3. Results and Discussion
3.1. Experimental Setup
3.2. Comparative Analysis
3.3. Complexity Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
FM | focus measure |
ML | modified Laplacian |
SFF | shape-from-focus |
DRDF | directional ring difference filter |
RDF | ring difference filter |
RCP | response cancellation problem |
GT | ground truth |
FV | focus volume |
FMSS | focus measure sum and spread |
MCG | modulus color gradient |
GLV | gray-level variance |
RT | reduced Tenengrad |
References
- Nourbakhsh, I.R.; Andre, D.; Tomasi, C.; Genesereth, M.R. Mobile robot obstacle avoidance via depth from focus. Robot. Auton. Syst. 1997, 22, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.Y.; Subbarao, M. Vision system for fast 3-D model reconstruction. Opt. Eng. 2004, 43, 1651–1664. [Google Scholar] [CrossRef]
- Nayar, S.K.; Nakagawa, Y. Shape from focus. IEEE Trans. Pattern Anal. Mach. Intell. 1994, 16, 824–831. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, M.T.; Choi, T.S. Nonlinear approach for enhancement of image focus volume in shape from focus. IEEE Trans. Image Process. 2012, 21, 2866–2873. [Google Scholar] [CrossRef]
- Pertuz, S.; Puig, D.; Garcia, M.A. Analysis of focus measure operators for shape-from-focus. Pattern Recognit. 2013, 46, 1415–1432. [Google Scholar] [CrossRef]
- Boshtayeva, M.; Hafner, D.; Weickert, J. A focus fusion framework with anisotropic depth map smoothing. Pattern Recognit. 2015, 48, 3310–3323. [Google Scholar] [CrossRef] [Green Version]
- Ali, U.; Mahmood, M.T. Robust focus volume regularization in shape from focus. IEEE Trans. Image Process. 2021, 30, 7215–7227. [Google Scholar] [CrossRef]
- Shirvaikar, M.V. An optimal measure for camera focus and exposure. In Proceedings of the Thirty-Sixth Southeastern Symposium on System Theory, Atlanta, GA, USA, 16 March 2004; pp. 472–475. [Google Scholar]
- Wee, C.Y.; Paramesran, R. Measure of image sharpness using eigenvalues. Inf. Sci. 2007, 177, 2533–2552. [Google Scholar] [CrossRef]
- Gaidhane, V.H.; Hote, Y.V.; Singh, V. Image focus measure based on polynomial coefficients and spectral radius. Signal Image Video Process. 2015, 9, 203–211. [Google Scholar] [CrossRef]
- Rajevenceltha, J.; Gaidhane, V.H. A novel approach for image focus measure. Signal Image Video Process. 2021, 15, 547–555. [Google Scholar] [CrossRef]
- Feichtenhofer, C.; Fassold, H.; Schallauer, P. A perceptual image sharpness metric based on local edge gradient analysis. IEEE Signal Process. Lett. 2013, 20, 379–382. [Google Scholar] [CrossRef]
- Hurtado-Pérez, R.; Toxqui-Quitl, C.; Padilla-Vivanco, A.; Aguilar-Valdez, J.F.; Ortega-Mendoza, G. Focus measure method based on the modulus of the gradient of the color planes for digital microscopy. Opt. Eng. 2018, 57, 023106. [Google Scholar] [CrossRef] [Green Version]
- Helmy, I.; Choi, W. Reduced Tenengrad focus measure for performance improvement of astronomical images. In Proceedings of the 2022 International Conference on Electronics, Information, and Communication (ICEIC), Jeju, Republic of Korea, 6–9 February 2022; pp. 1–4. [Google Scholar]
- Subbarao, M.; Choi, T.S.; Nikzad, A. Focusing techniques. Opt. Eng. 1993, 32, 2824–2836. [Google Scholar] [CrossRef]
- Hu, Z.; Liang, W.; Ding, D.; Wei, G. An improved multi-focus image fusion algorithm based on multi-scale weighted focus measure. Appl. Intell. 2021, 51, 4453–4469. [Google Scholar] [CrossRef]
- Kautsky, J.; Flusser, J.; Zitova, B.; Šimberová, S. A new wavelet-based measure of image focus. Pattern Recognit. Lett. 2002, 23, 1785–1794. [Google Scholar] [CrossRef]
- Minhas, R.; Mohammed, A.A.; Wu, Q.J. Shape from focus using fast discrete curvelet transform. Pattern Recognit. 2011, 44, 839–853. [Google Scholar] [CrossRef]
- Jeon, J.; Lee, J.; Paik, J. Robust focus measure for unsupervised auto-focusing based on optimum discrete cosine transform coefficients. IEEE Trans. Consum. Electron. 2011, 57, 1–5. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Y.; Xiong, Z.; Li, J.; Zhang, M. Focus and blurriness measure using reorganized DCT coefficients for an autofocus application. IEEE Trans. Circuits Syst. Video Technol. 2016, 28, 15–30. [Google Scholar] [CrossRef]
- Nie, X.; Xiao, B.; Bi, X.; Li, W.; Gao, X. A focus measure in discrete cosine transform domain for multi-focus image fast fusion. Neurocomputing 2021, 465, 93–102. [Google Scholar] [CrossRef]
- Yap, P.T.; Raveendran, P. Image focus measure based on Chebyshev moments. IEE Proc.-Vis. Image Signal Process. 2004, 151, 128–136. [Google Scholar] [CrossRef]
- Mutahira, H.; Ahmad, B.; Muhammad, M.S.; Shin, D.R. Focus measurement in color space for shape from focus systems. IEEE Access 2021, 9, 103291–103310. [Google Scholar] [CrossRef]
- Zhang, Y.; Bai, X.; Wang, T. Boundary finding based multi-focus image fusion through multi-scale morphological focus-measure. Inf. Fusion 2017, 35, 81–101. [Google Scholar] [CrossRef]
- Jeon, H.G.; Surh, J.; Im, S.; Kweon, I.S. Ring Difference Filter for Fast and Noise Robust Depth From Focus. IEEE Trans. Image Process. 2019, 29, 1045–1060. [Google Scholar] [CrossRef]
- Minhas, R.; Mohammed, A.A.; Wu, Q.J.; Sid-Ahmed, M.A. 3D shape from focus and depth map computation using steerable filters. In Image Analysis and Recognition, Proceedings of the 6th International Conference, ICIAR 2009, Halifax, Canada, 6–8 July 2009; Springer: Berlin/Heidelberg, Germany, 2009; pp. 573–583. [Google Scholar]
- Wang, J.; Qu, H.; Wei, Y.; Xie, M.; Xu, J.; Zhang, Z. Multi-focus image fusion based on quad-tree decomposition and edge-weighted focus measure. Signal Process. 2022, 198, 108590. [Google Scholar] [CrossRef]
- Guo, L.; Liu, L. A Perceptual-Based Robust Measure of Image Focus. IEEE Signal Process. Lett. 2022, 29, 2717–2721. [Google Scholar] [CrossRef]
- Jang, H.S.; Yun, G.; Mahmood, M.T.; Kang, M.K. Optimal Sampling for Shape from Focus by Using Gaussian Process Regression. In Proceedings of the 2020 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 4–6 January 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Jang, H.S.; Muhammad, M.S.; Choi, T.S. Optimizing Image Focus for Shape from Focus Through Locally Weighted Non-Parametric Regression. IEEE Access 2019, 7, 74393–74400. [Google Scholar] [CrossRef]
- Fu, B.; He, R.; Yuan, Y.; Jia, W.; Yang, S.; Liu, F. Shape from focus using gradient of focus measure curve. Opt. Lasers Eng. 2023, 160, 107320. [Google Scholar] [CrossRef]
- Gladines, J.; Sels, S.; De Boi, I.; Vanlanduit, S. A phase correlation based peak detection method for accurate shape from focus measurements. Measurement 2023, 213, 112726. [Google Scholar] [CrossRef]
- Ali, U.; Mahmood, M.T. Energy minimization for image focus volume in shape from focus. Pattern Recognit. 2022, 126, 108559. [Google Scholar] [CrossRef]
- Tomasi, C.; Manduchi, R. Bilateral filtering for gray and color images. In Proceedings of the Sixth International Conference on Computer Vision, Bombay, India, 7 January 1998; pp. 839–846. [Google Scholar]
- Petschnigg, G.; Szeliski, R.; Agrawala, M.; Cohen, M.; Hoppe, H.; Toyama, K. Digital photography with flash and no-flash image pairs. ACM Trans. Graph. 2004, 23, 664–672. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Sun, J.; Tang, X. Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 35, 1397–1409. [Google Scholar] [CrossRef] [PubMed]
- Ali, U.; Lee, I.H.; Mahmood, M.T. Guided image filtering in shape-from-focus: A comparative analysis. Pattern Recognit. 2021, 111, 107670. [Google Scholar] [CrossRef]
- Abuolaim, A.; Brown, M.S. Defocus deblurring using dual-pixel data. In Computer Vision—ECCV 2020, Proceedings of the 16th European Conference, Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 111–126. [Google Scholar]
- Honauer, K.; Johannsen, O.; Kondermann, D.; Goldluecke, B. A dataset and evaluation methodology for depth estimation on 4D light fields. In Computer Vision–ACCV 2016, Proceedings of the 13th Asian Conference on Computer Vision, Taipei, Taiwan, 20–24 November 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 19–34. [Google Scholar]
- Seznec, M.; Gac, N.; Orieux, F.; Sashala Naik, A. Computing large 2D convolutions on GPU efficiently with the im2tensor algorithm. J. Real-Time Image Process. 2022, 19, 1035–1047. [Google Scholar] [CrossRef]
RDF | DRDF | RDF | DRDF | RDF | DRDF | |
---|---|---|---|---|---|---|
6.1262 | 5.2878 | 6.7047 | 5.5958 | 6.9941 | 5.9153 | |
6.5750 | 5.5910 | 6.8765 | 5.8888 | 7.1658 | 6.1661 | |
6.7978 | 5.8843 | 7.0922 | 6.1584 | 7.2921 | 6.3805 |
RDF | DRDF | RDF | DRDF | RDF | DRDF | |
---|---|---|---|---|---|---|
0.6728 | 0.7481 | 0.6190 | 0.7207 | 0.5885 | 0.6933 | |
0.6313 | 0.7207 | 0.6007 | 0.6926 | 0.5717 | 0.6718 | |
0.6087 | 0.6927 | 0.5786 | 0.6679 | 0.5608 | 0.6511 |
Synthetic | Real | |||||
---|---|---|---|---|---|---|
Methods | Antinous | Cotton | Pens | Balls | Kitchen | Buddha |
GLV | 0.24 | 0.17 | 0.17 | 0.92 | 0.64 | 2.55 |
MCG | 0.14 | 0.09 | 0.09 | 0.38 | 0.26 | 0.98 |
ML | 0.07 | 0.06 | 0.06 | 0.16 | 0.13 | 0.42 |
FMSS | 0.47 | 0.44 | 0.41 | 1.49 | 1.08 | 4.33 |
RT | 0.06 | 0.04 | 0.04 | 0.15 | 0.10 | 0.40 |
MSM | 1.23 | 1.07 | 0.99 | 2.10 | 1.21 | 4.41 |
RDF | 0.09 | 0.06 | 0.06 | 0.02 | 0.14 | 0.54 |
DRDF | 0.15 | 0.14 | 0.14 | 0.32 | 0.24 | 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashfaq, K.; Mahmood, M.T. Directional Ring Difference Filter for Robust Shape-from-Focus. Mathematics 2023, 11, 3056. https://doi.org/10.3390/math11143056
Ashfaq K, Mahmood MT. Directional Ring Difference Filter for Robust Shape-from-Focus. Mathematics. 2023; 11(14):3056. https://doi.org/10.3390/math11143056
Chicago/Turabian StyleAshfaq, Khurram, and Muhammad Tariq Mahmood. 2023. "Directional Ring Difference Filter for Robust Shape-from-Focus" Mathematics 11, no. 14: 3056. https://doi.org/10.3390/math11143056
APA StyleAshfaq, K., & Mahmood, M. T. (2023). Directional Ring Difference Filter for Robust Shape-from-Focus. Mathematics, 11(14), 3056. https://doi.org/10.3390/math11143056