A Discrete JAYA Algorithm Based on Reinforcement Learning and Simulated Annealing for the Traveling Salesman Problem
Abstract
:1. Introduction
- A novel improved discrete JAYA algorithm for the TSP is designed.
- The Q-learning algorithm in reinforcement learning is embedded to adaptively select the promising transformation operator.
- The Metropolis acceptance criterion of SA is introduced to help jump out of the local optima.
- Compared with four typical algorithms developed by ourselves and eight efficient methods from the literature, the proposed algorithm displays great superiority in solving the TSP.
2. Related Work on TSP and JAYA Algorithm
2.1. Research on the Meta-Heuristic Algorithms of TSP
2.1.1. The Traveling Salesman Problem
2.1.2. Related Work on TSP
2.2. Research on JAYA Algorithm
2.2.1. The Basic JAYA Algorithm
2.2.2. Related Work on JAYA Algorithm
3. The Proposed QSA-DJAYA Algorithm for TSP
3.1. Strategy Selection Based on Q-Learning Algorithm
Algorithm 1 Pseudo-code of Q-learning. |
1: Initialize the Q-table 2: Initialize the initial state 3: repeat 4: if then 5: Select an action among the set of all actions at random 6: else 7: Select an action that satisfies 8: end if 9: Take action , observe the reward and state 10: Update Q-values according to Equation (7) 11: until Termination condition satisfied |
3.2. Acceptance Strategy Based on SA
3.3. The Proposed QSA-DJAYA Algorithm
4. Experimental Results
4.1. Experimental Settings
4.2. Parameter Tuning
4.3. Experimental Results and Statistical Analysis
4.3.1. Results of Experiment 1
4.3.2. Results of Experiment 2
4.3.3. Results of Statistical Tests
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dantzig, G.B.; Ramser, J.H. The Truck Dispatching Problem. Manag. Sci. 1959, 6, 80–91. [Google Scholar] [CrossRef]
- Saji, Y.; Barkatou, M. A discrete bat algorithm based on Lévy flights for Euclidean traveling salesman problem. Expert Syst. Appl. 2021, 172, 114639. [Google Scholar] [CrossRef]
- Arora, S. Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. J. ACM 1998, 45, 753–782. [Google Scholar] [CrossRef]
- Laporte, G. The traveling salesman problem: An overview of exact and approximate algorithms. Eur. J. Oper. Res. 1992, 59, 231–247. [Google Scholar] [CrossRef]
- Potvin, J.Y. Genetic algorithms for the traveling salesman problem. Ann. Oper. Res. 1996, 63, 337–370. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, J. A discrete cuckoo search algorithm for traveling salesman problem and its application in cutting path optimization. Comput. Ind. Eng. 2022, 169, 108157. [Google Scholar] [CrossRef]
- Yang, W.; Pei, Z. Hybrid ABC/PSO to solve travelling salesman problem. Int. J. Comput. Sci. Math. 2013, 4, 214–221. [Google Scholar] [CrossRef]
- Mahi, M.; Baykan, Ö.K.; Kodaz, H. A new hybrid method based on Particle Swarm Optimization, Ant Colony Optimization and 3-Opt algorithms for Traveling Salesman Problem. Appl. Soft Comput. 2015, 30, 484–490. [Google Scholar] [CrossRef]
- Yang, Z.; Xiao, M.Q.; Ge, Y.W.; Feng, D.L.; Zhang, L.; Song, H.F.; Tang, X.L. A double-loop hybrid algorithm for the traveling salesman problem with arbitrary neighbourhoods. Eur. J. Oper. Res. 2018, 265, 65–80. [Google Scholar] [CrossRef]
- Geng, X.; Chen, Z.; Yang, W.; Shi, D.; Zhao, K. Solving the traveling salesman problem based on an adaptive simulated annealing algorithm with greedy search. Appl. Soft Comput. 2011, 11, 3680–3689. [Google Scholar] [CrossRef]
- Ebadinezhad, S. DEACO: Adopting dynamic evaporation strategy to enhance ACO algorithm for the traveling salesman problem. Eng. Appl. Artif. Intell. 2020, 92, 103649. [Google Scholar] [CrossRef]
- Gülcü, Ş.; Mahi, M.; Baykan, Ö.K.; Kodaz, H. A parallel cooperative hybrid method based on ant colony optimization and 3-Opt algorithm for solving traveling salesman problem. Soft Comput. 2018, 22, 1669–1685. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, Z.; Luan, S.; Li, X.; Sun, Y. Opposition-based ant colony optimization algorithm for the traveling salesman problem. Mathematics 2020, 8, 1650. [Google Scholar] [CrossRef]
- Shahadat, A.S.B.; Akhand, M.; Kamal, M.A.S. Visibility Adaptation in Ant Colony Optimization for Solving Traveling Salesman Problem. Mathematics 2022, 10, 2448. [Google Scholar] [CrossRef]
- Dong, Y.; Wu, Q.; Wen, J. An improved shuffled frog-leaping algorithm for the minmax multiple traveling salesman problem. Neural Comput. Appl. 2021, 33, 17057–17069. [Google Scholar] [CrossRef]
- Zhong, Y.; Lin, J.; Wang, L.; Zhang, H. Hybrid discrete artificial bee colony algorithm with threshold acceptance criterion for traveling salesman problem. Inf. Sci. 2017, 421, 70–84. [Google Scholar] [CrossRef]
- Choong, S.S.; Wong, L.P.; Lim, C.P. An artificial bee colony algorithm with a Modified Choice Function for the traveling salesman problem. Swarm Evol. Comput. 2019, 44, 622–635. [Google Scholar] [CrossRef]
- Khan, I.; Maiti, M.K. A swap sequence based Artificial Bee Colony algorithm for Traveling Salesman Problem. Swarm Evol. Comput. 2019, 44, 428–438. [Google Scholar] [CrossRef]
- Karaboga, D.; Gorkemli, B. Solving Traveling Salesman Problem by Using Combinatorial Artificial Bee Colony Algorithms. Int. J. Artif. Intell. Tools 2019, 28, 1950004. [Google Scholar] [CrossRef]
- Pandiri, V.; Singh, A. A hyper-heuristic based artificial bee colony algorithm for k-Interconnected multi-depot multi-traveling salesman problem. Inf. Sci. 2018, 463-464, 261–281. [Google Scholar] [CrossRef]
- Venkata Rao, R. Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int. J. Ind. Eng. Comput. 2016, 7, 19–34. [Google Scholar] [CrossRef]
- Li, J.Q.; Deng, J.W.; Li, C.Y.; Han, Y.Y.; Tian, J.; Zhang, B.; Wang, C.G. An improved Jaya algorithm for solving the flexible job shop scheduling problem with transportation and setup times. Knowl.-Based Syst. 2020, 200, 106032. [Google Scholar] [CrossRef]
- Thirumoorthy, K.; Muneeswaran, K. A hybrid approach for text document clustering using Jaya optimization algorithm. Expert Syst. Appl. 2021, 178, 115040. [Google Scholar] [CrossRef]
- Xiong, G.; Zhang, J.; Shi, D.; Zhu, L.; Yuan, X. Optimal identification of solid oxide fuel cell parameters using a competitive hybrid differential evolution and Jaya algorithm. Int. J. Hydrogen Energy 2021, 46, 6720–6733. [Google Scholar] [CrossRef]
- Chaudhuri, A.; Sahu, T.P. A hybrid feature selection method based on Binary Jaya algorithm for micro-array data classification. Comput. Electr. Eng. 2021, 90, 106963. [Google Scholar] [CrossRef]
- Chong, K.L.; Lai, S.H.; Ahmed, A.N.; Wan Jaafar, W.Z.; El-Shafie, A. Optimization of hydropower reservoir operation based on hedging policy using Jaya algorithm. Appl. Soft Comput. 2021, 106, 107325. [Google Scholar] [CrossRef]
- Gunduz, M.; Aslan, M. DJAYA: A discrete Jaya algorithm for solving traveling salesman problem. Appl. Soft Comput. 2021, 105, 107275. [Google Scholar] [CrossRef]
- Cinar, A.C.; Korkmaz, S.; Kiran, M.S. A discrete tree-seed algorithm for solving symmetric traveling salesman problem. Eng. Sci. Technol. Int. J. 2020, 23, 879–890. [Google Scholar] [CrossRef]
- Reinelt, G. TSPLIB—A Traveling Salesman Problem Library. ORSA J. Comput. 1991, 3, 376–384. [Google Scholar] [CrossRef]
- Hatamlou, A. Solving travelling salesman problem using black hole algorithm. Soft Comput. 2018, 22, 8167–8175. [Google Scholar] [CrossRef]
- Zhang, Z.; Han, Y. Discrete sparrow search algorithm for symmetric traveling salesman problem. Appl. Soft Comput. 2022, 118, 108469. [Google Scholar] [CrossRef]
- Zheng, J.; Hong, Y.; Xu, W.; Li, W.; Chen, Y. An effective iterated two-stage heuristic algorithm for the multiple Traveling Salesmen Problem. Comput. Oper. Res. 2022, 143, 105772. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, L.; Han, Y.; Zeng, X.; Yen, G.G.; Ishibuchi, H. Evolutionary Multimodal Multiobjective Optimization for Traveling Salesman Problems. IEEE Trans. Evol. Comput. 2023. [Google Scholar] [CrossRef]
- Tsai, C.H.; Lin, Y.D.; Yang, C.H.; Wang, C.K.; Chiang, L.C.; Chiang, P.J. A Biogeography-Based Optimization with a Greedy Randomized Adaptive Search Procedure and the 2-Opt Algorithm for the Traveling Salesman Problem. Sustainability 2023, 15, 5111. [Google Scholar] [CrossRef]
- Baraglia, R.; Hidalgo, J.; Perego, R. A hybrid heuristic for the traveling salesman problem. IEEE Trans. Evol. Comput. 2001, 5, 613–622. [Google Scholar] [CrossRef]
- Aslan, M.; Gunduz, M.; Kiran, M.S. JayaX: Jaya algorithm with xor operator for binary optimization. Appl. Soft Comput. 2019, 82, 105576. [Google Scholar] [CrossRef]
- Rao, R.; More, K. Design optimization and analysis of selected thermal devices using self-adaptive Jaya algorithm. Energy Convers. Manag. 2017, 140, 24–35. [Google Scholar] [CrossRef]
- Pradhan, C.; Bhende, C.N. Online load frequency control in wind integrated power systems using modified Jaya optimization. Eng. Appl. Artif. Intell. 2019, 77, 212–228. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Z.; Huang, C.; Tsui, K.L. A GPU-accelerated parallel Jaya algorithm for efficiently estimating Li-ion battery model parameters. Appl. Soft Comput. 2018, 65, 12–20. [Google Scholar] [CrossRef]
- Mazyavkina, N.; Sviridov, S.; Ivanov, S.; Burnaev, E. Reinforcement learning for combinatorial optimization: A survey. Comput. Oper. Res. 2021, 134, 105400. [Google Scholar] [CrossRef]
- Gündüz, M.; Kiran, M.S.; Özceylan, E. A hierarchic approach based on swarm intelligence to solve the traveling salesman problem. Turk. J. Electr. Eng. Comput. Sci. 2015, 23, 103–117. [Google Scholar] [CrossRef]
Action 1 | Action 2 | Action 3 | Action 4 | Action 5 | Action 6 | |
---|---|---|---|---|---|---|
State 1 | Q(1,1) | Q(1,2) | Q(1,3) | Q(1,4) | Q(1,5) | Q(1,6) |
State 2 | Q(2,1) | Q(2,2) | Q(2,3) | Q(2,4) | Q(2,5) | Q(2,6) |
State 3 | Q(3,1) | Q(3,2) | Q(3,3) | Q(3,4) | Q(3,5) | Q(3,6) |
State 4 | Q(4,1) | Q(4,2) | Q(4,3) | Q(4,4) | Q(4,5) | Q(4,6) |
State 5 | Q(5,1) | Q(5,2) | Q(5,3) | Q(5,4) | Q(5,5) | Q(5,6) |
State 6 | Q(6,1) | Q(6,2) | Q(6,3) | Q(6,4) | Q(6,5) | Q(6,6) |
Number | Name | N | BKS |
---|---|---|---|
1 | gr17 | 17 | 2085 |
2 | bayg29 | 29 | 1610 |
3 | bays29 | 29 | 2020 |
4 | oliver30 | 30 | 420 |
5 | swiss42 | 42 | 1273 |
6 | eil51 | 51 | 426 |
7 | berlin52 | 52 | 7542 |
8 | st70 | 70 | 675 |
9 | pr76 | 76 | 108,159 |
10 | eil76 | 76 | 538 |
11 | rat99 | 99 | 1211 |
12 | kroA100 | 100 | 21,282 |
13 | kroB100 | 100 | 22,141 |
14 | kroC100 | 100 | 20,749 |
15 | kroD100 | 100 | 21,294 |
16 | kroE100 | 100 | 22,068 |
17 | eil101 | 101 | 629 |
18 | lin105 | 105 | 14,379 |
19 | pr124 | 124 | 59,030 |
20 | ch150 | 150 | 6528 |
21 | tsp225 | 225 | 3919 |
Parameter | Value | Average | Std | Gap (%) |
---|---|---|---|---|
10 | 21,012.30 | 138.55 | 1.27 | |
20 | 21,066.90 | 175.61 | 1.53 | |
30 | 21,198.10 | 39.09 | 2.16 | |
40 | 21,161.20 | 65.40 | 1.99 | |
50 | 21,187.60 | 13.80 | 2.11 | |
60 | 21,183.00 | 0.00 | 2.09 | |
70 | 21,183.00 | 0.00 | 2.09 | |
80 | 21,183.00 | 0.00 | 2.09 | |
90 | 21,183.00 | 0.00 | 2.09 | |
100 | 21,183.00 | 0.00 | 2.09 | |
0.1 | 20,933.00 | 114.30 | 0.89 | |
0.2 | 21,033.90 | 128.93 | 1.37 | |
0.3 | 21,008.50 | 89.24 | 1.25 | |
0.4 | 20,921.70 | 163.11 | 0.83 | |
0.5 | 20,971.50 | 159.76 | 1.07 | |
0.6 | 20,999.10 | 173.70 | 1.21 | |
0.7 | 20,926.90 | 150.25 | 0.86 | |
0.8 | 20,902.70 | 118.09 | 0.74 | |
0.9 | 21,012.30 | 138.55 | 1.27 | |
0.1 | 21,036.20 | 140.78 | 1.38 | |
0.2 | 21,000.00 | 164.05 | 1.21 | |
0.3 | 20,960.80 | 154.05 | 1.02 | |
0.4 | 20,910.50 | 141.26 | 0.78 | |
0.5 | 21,006.80 | 180.07 | 1.24 | |
0.6 | 21,036.50 | 131.14 | 1.39 | |
0.7 | 20,984.80 | 224.06 | 1.14 | |
0.8 | 20,902.70 | 118.09 | 0.74 | |
0.9 | 21,060.60 | 170.80 | 1.50 | |
0.1 | 20,902.70 | 118.09 | 0.74 | |
0.2 | 21,095.50 | 157.97 | 1.67 | |
0.3 | 20,998.60 | 164.42 | 1.20 | |
0.4 | 20,950.20 | 195.06 | 0.97 | |
0.5 | 20,940.00 | 181.61 | 0.92 | |
0.01 | 21,179.30 | 22.03 | 2.07 | |
0.02 | 20,995.40 | 129.59 | 1.19 | |
0.03 | 21,073.80 | 217.49 | 1.57 | |
0.04 | 21,028.60 | 227.02 | 1.35 | |
0.05 | 20,925.10 | 98.58 | 0.85 |
Name | Algorithm | Best | Worst | Median | Average | Std | Gap (%) | Time (s) |
---|---|---|---|---|---|---|---|---|
gr17 | GA | 2238 | 2489 | 2376.0 | 2377.53 | 60.52 | 14.03 | 0.24 |
ACO | 2085 | 2149 | 2115.0 | 2114.67 | 23.30 | 1.42 | 0.77 | |
SA | 2085 | 2090 | 2087.5 | 2087.50 | 2.50 | 0.12 | 0.09 | |
DJAYA | 2085 | 2088 | 2085.0 | 2085.70 | 1.27 | 0.03 | 0.80 | |
QSA-DJAYA | 2085 | 2085 | 2085.0 | 2085.00 | 0.00 | 0.00 | 0.50 | |
bayg29 | GA | 2378 | 2698 | 2531.0 | 2539.03 | 70.30 | 57.70 | 0.50 |
ACO | 1638 | 1672 | 1661.5 | 1657.83 | 6.58 | 2.97 | 3.90 | |
SA | 1610 | 1683 | 1622.0 | 1626.47 | 19.64 | 1.02 | 0.15 | |
DJAYA | 1615 | 1674 | 1634.0 | 1637.73 | 15.69 | 1.72 | 2.68 | |
QSA-DJAYA | 1610 | 1646 | 1610.0 | 1618.83 | 12.32 | 0.55 | 2.08 | |
bays29 | GA | 2858 | 3360 | 3213.5 | 3175.40 | 134.26 | 57.20 | 0.49 |
ACO | 2020 | 2062 | 2020.0 | 2024.60 | 9.44 | 0.23 | 3.79 | |
SA | 2020 | 2082 | 2033.0 | 2038.43 | 19.58 | 0.91 | 0.15 | |
DJAYA | 2026 | 2035 | 2026.0 | 2028.70 | 3.57 | 0.43 | 2.69 | |
QSA-DJAYA | 2020 | 2034 | 2026.0 | 2028.40 | 3.68 | 0.42 | 2.09 | |
swiss42 | GA | 2380 | 2710 | 2593.0 | 2587.63 | 84.98 | 103.27 | 0.87 |
ACO | 1287 | 1303 | 1299.0 | 1297.93 | 3.53 | 1.96 | 6.67 | |
SA | 1273 | 1391 | 1335.5 | 1329.87 | 35.51 | 4.47 | 0.23 | |
DJAYA | 1273 | 1274 | 1273.0 | 1273.23 | 0.42 | 0.02 | 6.93 | |
QSA-DJAYA | 1273 | 1273 | 1273.0 | 1273.00 | 0.00 | 0.00 | 6.12 | |
eil51 | GA | 881 | 984 | 921.0 | 921.70 | 22.17 | 116.36 | 1.22 |
ACO | 437 | 457 | 447.0 | 447.37 | 4.98 | 5.02 | 11.26 | |
SA | 428 | 454 | 441.0 | 440.97 | 6.36 | 3.51 | 0.29 | |
DJAYA | 428 | 438 | 432.0 | 432.30 | 3.68 | 1.48 | 12.26 | |
QSA-DJAYA | 426 | 434 | 434.0 | 432.73 | 2.38 | 1.58 | 10.92 | |
berlin52 | GA | 13705 | 16367 | 15563.0 | 15550.57 | 505.02 | 106.19 | 1.27 |
ACO | 7662 | 7767 | 7679.0 | 7683.53 | 24.27 | 1.88 | 11.84 | |
SA | 7542 | 8317 | 7988.5 | 7954.83 | 190.78 | 5.47 | 0.29 | |
DJAYA | 7542 | 7711 | 7657.0 | 7641.27 | 41.95 | 1.32 | 12.68 | |
QSA-DJAYA | 7542 | 7798 | 7542.0 | 7557.33 | 57.19 | 0.20 | 11.74 |
Name | Algorithm | Best | Worst | Median | Average | Std | Gap (%) | Time (s) |
---|---|---|---|---|---|---|---|---|
st70 | GA | 1888 | 2093 | 2005.5 | 1994.07 | 51.53 | 195.42 | 2.01 |
ACO | 708 | 734 | 718.0 | 718.83 | 6.37 | 6.49 | 25.68 | |
SA | 684 | 744 | 706.5 | 709.00 | 15.55 | 5.04 | 0.41 | |
DJAYA | 687 | 714 | 703.0 | 701.90 | 8.87 | 3.99 | 39.36 | |
QSA-DJAYA | 684 | 703 | 684.0 | 686.80 | 4.85 | 1.75 | 29.46 | |
pr76 | GA | 306,770 | 329,482 | 322,696.5 | 320,291.60 | 6367.43 | 196.13 | 2.36 |
ACO | 115,846 | 121,443 | 118,745.5 | 118,676.93 | 1172.13 | 9.72 | 30.59 | |
SA | 109,872 | 120,095 | 113,747.5 | 114,336.93 | 2762.89 | 5.71 | 0.46 | |
DJAYA | 109,190 | 110,684 | 110,684.0 | 110,564.07 | 383.17 | 2.22 | 57.08 | |
QSA-DJAYA | 108,159 | 110,858 | 109,653.0 | 109,530.73 | 907.21 | 1.27 | 38.73 | |
eil76 | GA | 1335 | 1498 | 1425.0 | 1420.47 | 37.08 | 164.03 | 2.32 |
ACO | 558 | 568 | 565.0 | 564.57 | 2.08 | 4.94 | 32.23 | |
SA | 553 | 585 | 567.0 | 567.43 | 8.53 | 5.47 | 0.47 | |
DJAYA | 553 | 563 | 558.0 | 558.90 | 2.94 | 3.88 | 56.18 | |
QSA-DJAYA | 540 | 553 | 551.0 | 550.60 | 2.23 | 2.34 | 38.34 | |
rat99 | GA | 4120 | 4633 | 4474.0 | 4467.73 | 113.72 | 268.93 | 3.74 |
ACO | 1287 | 1337 | 1313.0 | 1312.17 | 11.30 | 8.35 | 61.79 | |
SA | 1257 | 1349 | 1307.5 | 1307.33 | 25.28 | 7.95 | 0.65 | |
DJAYA | 1253 | 1257 | 1256.0 | 1255.83 | 0.69 | 3.70 | 182.15 | |
QSA-DJAYA | 1230 | 1256 | 1253.0 | 1253.20 | 4.52 | 3.48 | 95.56 | |
kroA100 | GA | 83,919 | 93,133 | 90,348.5 | 89,856.23 | 2208.86 | 322.22 | 3.74 |
ACO | 22,428 | 23,318 | 22,748.5 | 22,760.13 | 238.53 | 6.95 | 67.86 | |
SA | 21,829 | 23,595 | 22,495.0 | 22,610.57 | 513.41 | 6.24 | 0.65 | |
DJAYA | 21,319 | 21,578 | 21,514.0 | 21,498.97 | 43.24 | 1.02 | 191.85 | |
QSA-DJAYA | 21,292 | 21389 | 21,292.0 | 21,295.37 | 17.40 | 0.06 | 97.56 | |
kroB100 | GA | 83,257 | 92,138 | 89,154.5 | 88,831.47 | 2269.08 | 301.21 | 3.81 |
ACO | 22,901 | 23,446 | 23,256.5 | 23,254.00 | 114.49 | 5.03 | 67.49 | |
SA | 22,647 | 24,310 | 23,691.5 | 23,670.10 | 402.66 | 6.91 | 0.65 | |
DJAYA | 22,258 | 23,162 | 22,762.0 | 22,739.27 | 154.60 | 2.70 | 190.28 | |
QSA-DJAYA | 22,220 | 22,724 | 22,708.0 | 22,635.70 | 130.59 | 2.23 | 96.98 | |
kroC100 | GA | 83,948 | 94,564 | 88,964.0 | 89,056.27 | 2414.13 | 329.21 | 3.84 |
ACO | 21,511 | 21,775 | 21,680.0 | 21,661.67 | 68.92 | 4.40 | 67.93 | |
SA | 21,449 | 24,221 | 22,067.5 | 22,282.13 | 593.60 | 7.39 | 0.66 | |
DJAYA | 21,185 | 21,309 | 21,206.0 | 21,212.37 | 29.33 | 2.23 | 188.90 | |
QSA-DJAYA | 20,965 | 21,331 | 21,183.0 | 21,180.80 | 48.06 | 2.08 | 97.18 | |
kroD100 | GA | 81680 | 89459 | 86842.0 | 86690.60 | 1873.05 | 307.11 | 3.80 |
ACO | 22,572 | 23,360 | 23,020.0 | 23,007.33 | 159.53 | 8.05 | 68.44 | |
SA | 21,822 | 24,076 | 22,701.0 | 22,741.30 | 523.69 | 6.80 | 0.67 | |
DJAYA | 21,620 | 22,863 | 22,001.0 | 22,060.23 | 299.54 | 3.60 | 187.00 | |
QSA-DJAYA | 21495 | 21,896 | 21,575.0 | 21,583.57 | 79.89 | 1.36 | 97.08 | |
kroE100 | GA | 85,061 | 93,912 | 90,908.5 | 90,557.90 | 1932.14 | 310.36 | 3.83 |
ACO | 23,196 | 23,877 | 23,667.0 | 23,661.23 | 142.12 | 7.22 | 68.02 | |
SA | 22,712 | 24,138 | 23,354.0 | 23,364.07 | 360.65 | 5.87 | 0.65 | |
DJAYA | 22,509 | 22,679 | 22,547.0 | 22,562.10 | 49.78 | 2.24 | 187.80 | |
QSA-DJAYA | 22,130 | 22,475 | 22,466.0 | 22,429.53 | 74.21 | 1.64 | 94.22 | |
eil101 | GA | 1872 | 2021 | 1963.0 | 1958.70 | 42.85 | 211.40 | 3.88 |
ACO | 677 | 705 | 693.0 | 693.70 | 6.24 | 10.29 | 66.95 | |
SA | 647 | 689 | 667.0 | 666.73 | 10.50 | 6.00 | 0.67 | |
DJAYA | 642 | 664 | 650.0 | 650.27 | 5.52 | 3.38 | 190.78 | |
QSA-DJAYA | 630 | 646 | 635.0 | 635.27 | 3.02 | 1.00 | 99.91 | |
lin105 | GA | 58,391 | 67,943 | 63,848.0 | 63,722.03 | 1998.94 | 343.16 | 4.18 |
ACO | 14,902 | 15,150 | 15,054.0 | 15,050.50 | 71.47 | 4.67 | 87.30 | |
SA | 14,767 | 16,061 | 15,484.5 | 15,461.77 | 347.25 | 7.53 | 0.71 | |
DJAYA | 14,576 | 15,071 | 14,877.5 | 14,856.93 | 118.66 | 3.32 | 233.07 | |
QSA-DJAYA | 14379 | 14,660 | 14,438.0 | 14,451.43 | 84.12 | 0.50 | 115.69 | |
pr124 | GA | 339,211 | 373,718 | 362,675.0 | 360,680.93 | 8077.14 | 511.01 | 5.63 |
ACO | 60,590 | 63,297 | 61,714.5 | 61,795.57 | 570.39 | 4.69 | 114.72 | |
SA | 60,220 | 69,852 | 62,575.0 | 62,844.47 | 2128.64 | 6.46 | 0.87 | |
DJAYA | 59,246 | 59,792 | 59,246.0 | 59,350.17 | 194.25 | 0.54 | 510.69 | |
QSA-DJAYA | 59,030 | 59,792 | 59,548.0 | 59,454.43 | 270.90 | 0.72 | 207.90 | |
ch150 | GA | 30,083 | 32,150 | 31,169.5 | 31,084.30 | 479.35 | 376.17 | 8.46 |
ACO | 6758 | 6850 | 6824.0 | 6824.60 | 19.99 | 4.54 | 210.20 | |
SA | 6862 | 7533 | 7241.5 | 7223.60 | 180.03 | 10.66 | 1.16 | |
DJAYA | 6598 | 6633 | 6629.0 | 6625.07 | 9.38 | 1.49 | 1259.00 | |
QSA-DJAYA | 6566 | 6624 | 6598.0 | 6596.73 | 10.44 | 1.05 | 372.08 | |
tsp225 | GA | 22,763 | 24,184 | 23,645.0 | 23,618.03 | 368.21 | 502.65 | 19.53 |
ACO | 4225 | 4380 | 4293.5 | 4291.07 | 37.70 | 9.49 | 658.87 | |
SA | 4313 | 4542 | 4388.0 | 4412.00 | 58.10 | 12.58 | 2.10 | |
DJAYA | 4038 | 4069 | 4056.0 | 4054.80 | 8.11 | 3.47 | 11,326.09 | |
QSA-DJAYA | 3994 | 4059 | 4012.0 | 4013.77 | 11.85 | 2.42 | 1715.49 |
Name | Algorithm | Best | Worst | Median | Average | Std | Gap (%) | Time (s) |
---|---|---|---|---|---|---|---|---|
swiss42 | GA | 2350 | 2632 | 2515.0 | 2514.80 | 74.42 | 97.55 | 2.00 |
ACO | 1287 | 1303 | 1299.0 | 1298.07 | 3.53 | 1.97 | 2.00 | |
SA | 1273 | 1398 | 1332.5 | 1332.07 | 34.51 | 4.64 | 2.00 | |
DJAYA | 1273 | 1293 | 1281.0 | 1281.07 | 6.79 | 0.63 | 2.00 | |
QSA-DJAYA | 1273 | 1274 | 1273.0 | 1273.03 | 0.18 | 0.00 | 2.00 | |
berlin52 | GA | 13,727 | 15,744 | 15,078.5 | 15,033.30 | 385.67 | 99.33 | 10.00 |
ACO | 7547 | 7791 | 7679.0 | 7676.30 | 44.08 | 1.78 | 10.00 | |
SA | 7542 | 8534 | 7970.0 | 7970.93 | 226.49 | 5.69 | 10.00 | |
DJAYA | 7542 | 7657 | 7657.0 | 7633.30 | 38.79 | 1.21 | 10.00 | |
QSA-DJAYA | 7542 | 7798 | 7542.0 | 7563.60 | 61.42 | 0.29 | 10.00 | |
pr76 | GA | 276,734 | 314,038 | 305,579.5 | 303,113.67 | 7994.43 | 180.25 | 60.00 |
ACO | 114,953 | 120,653 | 117,885.5 | 117,736.00 | 1530.89 | 8.85 | 60.00 | |
SA | 109,265 | 120,582 | 113,844.5 | 113,985.27 | 2870.60 | 5.39 | 60.00 | |
DJAYA | 109,190 | 111,336 | 110,684.0 | 110,489.73 | 530.23 | 2.15 | 60.00 | |
QSA-DJAYA | 108,159 | 111,464 | 109,190.0 | 109,429.10 | 1015.60 | 1.17 | 60.00 | |
kroA100 | GA | 81,263 | 88,952 | 87,087.5 | 86,860.57 | 1506.34 | 308.14 | 120.00 |
ACO | 22,317 | 23,110 | 22,592.5 | 22,647.50 | 206.69 | 6.42 | 120.00 | |
SA | 21,438 | 23,949 | 22,136.0 | 22,359.70 | 648.97 | 5.06 | 120.00 | |
DJAYA | 21,292 | 21,389 | 21,389.0 | 21,385.77 | 17.41 | 0.49 | 120.00 | |
QSA-DJAYA | 21,292 | 21,711 | 21,292.0 | 21,333.70 | 106.19 | 0.24 | 120.00 | |
lin105 | GA | 57,147 | 63,181 | 60,680.5 | 60,620.53 | 1229.44 | 321.59 | 120.00 |
ACO | 14,844 | 15,203 | 15,042.5 | 15,037.40 | 79.55 | 4.58 | 120.00 | |
SA | 14,988 | 16,029 | 15,296.0 | 15,323.40 | 265.98 | 6.57 | 120.00 | |
DJAYA | 14,438 | 14,849 | 14,743.0 | 14,698.77 | 112.30 | 2.22 | 120.00 | |
QSA-DJAYA | 14,379 | 14,706 | 14,463.5 | 14,473.60 | 96.34 | 0.66 | 120.00 | |
pr124 | GA | 331,771 | 356,698 | 346,274.0 | 346,512.67 | 6497.63 | 487.01 | 120.00 |
ACO | 60,726 | 62,930 | 61,742.5 | 61,829.87 | 571.21 | 4.74 | 120.00 | |
SA | 59,354 | 64,857 | 61,227.0 | 61,409.57 | 1364.10 | 4.03 | 120.00 | |
DJAYA | 59,246 | 59,792 | 59,246.0 | 59,431.53 | 252.66 | 0.68 | 120.00 | |
QSA-DJAYA | 59,076 | 59,792 | 59,246.0 | 59,396.73 | 246.66 | 0.62 | 120.00 | |
ch150 | GA | 28,719 | 30,887 | 30,384.0 | 30,316.60 | 421.04 | 364.41 | 120.00 |
ACO | 6792 | 6889 | 6825.0 | 6828.03 | 21.07 | 4.60 | 120.00 | |
SA | 6697 | 7147 | 6974.5 | 6961.63 | 124.89 | 6.64 | 120.00 | |
DJAYA | 6624 | 6705 | 6692.5 | 6689.07 | 19.00 | 2.47 | 120.00 | |
QSA-DJAYA | 6574 | 6625 | 6605.0 | 6601.83 | 10.05 | 1.13 | 120.00 | |
tsp225 | GA | 22,872 | 23,777 | 23,375.5 | 23,342.80 | 257.03 | 495.63 | 120.00 |
ACO | 4261 | 4420 | 4330.5 | 4329.63 | 30.21 | 10.48 | 120.00 | |
SA | 4060 | 4312 | 4183.0 | 4178.93 | 63.93 | 6.63 | 120.00 | |
DJAYA | 4178 | 4196 | 4190.0 | 4189.13 | 3.12 | 6.89 | 120.00 | |
QSA-DJAYA | 4037 | 4146 | 4093.0 | 4090.37 | 18.31 | 4.37 | 120.00 |
Name | Algorithm | Best | Worst | Average | Std |
---|---|---|---|---|---|
bays29 | ACO | 9239.1973 | 11,014.4483 | 9823.20 | 722.42 |
PSO | 9120.3388 | 9498.1711 | 9195.91 | 168.97 | |
GA | 9751.4255 | 10,513.9142 | 10,015.23 | 319.88 | |
BH | 9396.475 | 9507.1701 | 9463.25 | 60.96 | |
QSA-DJAYA | 2020 | 2026 | 2024.80 | 2.40 | |
bayg29 | ACO | 9447.4929 | 11,033.5484 | 9882.22 | 675.83 |
PSO | 9329.251 | 11,332.7224 | 9947.03 | 799.41 | |
GA | 9579.1234 | 10,411.1991 | 9771.95 | 127.11 | |
BH | 9375.4418 | 9375.4418 | 9375.44 | 0.00 | |
QSA-DJAYA | 1610 | 1626 | 1616.40 | 7.84 | |
eil51 | ACO | 454.3895 | 469.0531 | 461.02 | 6.30 |
PSO | 469.1551 | 737.5258 | 574.80 | 107.24 | |
GA | 448.8397 | 462.1142 | 453.48 | 9.42 | |
BH | 437.893 | 526.8977 | 458.93 | 38.64 | |
QSA-DJAYA | 427 | 434 | 432.60 | 2.80 | |
berlin52 | ACO | 7757.0263 | 10,541.1228 | 8522.90 | 1152.20 |
PSO | 9218.4682 | 14,279.4331 | 11,089.53 | 2067.93 | |
GA | 8779.7559 | 9565.3744 | 9288.45 | 1301.21 | |
BH | 8188.0714 | 9356.7483 | 8455.83 | 508.99 | |
QSA-DJAYA | 7542 | 7596 | 7552.80 | 21.60 | |
st70 | ACO | 711.6515 | 855.2032 | 757.75 | 59.61 |
PSO | 1030.8484 | 1756.1227 | 1321.81 | 269.28 | |
GA | 1112.3078 | 1242.2011 | 1158.85 | 52.17 | |
BH | 723.2691 | 1081.1087 | 797.57 | 125.23 | |
QSA-DJAYA | 683 | 697 | 686.60 | 5.24 | |
eil76 | ACO | 574.2404 | 665.9995 | 594.14 | 40.22 |
PSO | 804.2667 | 1195.9021 | 975.64 | 152.41 | |
GA | 619.2262 | 679.7864 | 652.06 | 122.10 | |
BH | 566.243 | 925.8417 | 659.10 | 152.18 | |
QSA-DJAYA | 551 | 551 | 551.00 | 0.00 | |
eil101 | ACO | 725.0996 | 868.2047 | 763.92 | 59.97 |
PSO | 1158.704 | 1973.8192 | 1499.99 | 319.75 | |
GA | 828.8806 | 854.4381 | 838.83 | 9.96 | |
BH | 720.3838 | 1249.8684 | 897.38 | 210.14 | |
QSA-DJAYA | 634 | 638 | 636.00 | 1.67 |
Name | Algorithm | Average | Std | Gap (%) |
---|---|---|---|---|
oliver30 | ACO | 424.68 | 1.41 | 0.22 |
ABC | 462.55 | 12.47 | 9.16 | |
HA | 423.74 | 0.00 | 0.00 | |
DTSA | 428.50 | 4.21 | 1.12 | |
DJAYA | 426.88 | 2.74 | 0.74 | |
QSA-DJAYA | 423.65 | 2.94 | 0.87 | |
eil51 | ACO | 457.86 | 4.07 | 6.76 |
ABC | 590.49 | 15.79 | 37.69 | |
HA | 443.39 | 5.25 | 3.39 | |
DTSA | 443.93 | 4.04 | 3.51 | |
DJAYA | 440.18 | 4.95 | 2.64 | |
QSA-DJAYA | 432.30 | 2.69 | 1.48 | |
berlin52 | ACO | 7659.31 | 38.70 | 1.52 |
ABC | 10,390.26 | 439.69 | 37.72 | |
HA | 7544.37 | 0.00 | 0.00 | |
DTSA | 7545.83 | 21.00 | 0.02 | |
DJAYA | 7580.30 | 80.60 | 0.48 | |
QSA-DJAYA | 7552.20 | 43.33 | 0.14 | |
st70 | ACO | 709.16 | 8.27 | 4.73 |
ABC | 1230.49 | 41.79 | 81.73 | |
HA | 700.58 | 7.51 | 3.47 | |
DTSA | 708.65 | 6.77 | 4.66 | |
DJAYA | 702.30 | 9.56 | 3.72 | |
QSA-DJAYA | 686.70 | 3.95 | 1.73 | |
eil76 | ACO | 561.98 | 3.50 | 3.04 |
ABC | 931.44 | 24.86 | 70.78 | |
HA | 557.98 | 4.10 | 2.31 | |
DTSA | 578.58 | 3.93 | 6.09 | |
DJAYA | 573.17 | 6.33 | 5.10 | |
QSA-DJAYA | 550.40 | 2.65 | 2.30 | |
pr76 | ACO | 116,321.22 | 885.79 | 7.55 |
ABC | 205,119.61 | 7379.16 | 89.65 | |
HA | 115,072.29 | 742.90 | 6.39 | |
DTSA | 14,930.03 | 1545.64 | 6.26 | |
DJAYA | 113,258.29 | 1711.93 | 4.71 | |
QSA-DJAYA | 109,417.35 | 944.67 | 1.16 | |
kroA100 | ACO | 22,880.12 | 235.18 | 7.49 |
ABC | 53,840.03 | 2198.36 | 152.94 | |
HA | 22,435.31 | 231.34 | 5.40 | |
DTSA | 21,728.40 | 358.13 | 2.08 | |
DJAYA | 21,735.31 | 331.33 | 2.13 | |
QSA-DJAYA | 21,297.05 | 21.11 | 0.07 | |
eil101 | ACO | 693.42 | 6.80 | 7.96 |
ABC | 1315.95 | 35.28 | 104.88 | |
HA | 683.39 | 6.56 | 6.40 | |
DTSA | 689.91 | 4.47 | 7.41 | |
DJAYA | 677.37 | 4.87 | 5.46 | |
QSA-DJAYA | 635.50 | 3.22 | 1.03 | |
ch150 | ACO | 6702.87 | 20.73 | 2.61 |
ABC | 21,617.48 | 453.71 | 230.93 | |
HA | 6677.12 | 19.30 | 2.22 | |
DTSA | 6748.99 | 32.63 | 3.32 | |
DJAYA | 6638.63 | 52.79 | 1.63 | |
QSA-DJAYA | 6596.30 | 9.97 | 1.05 | |
tsp225 | ACO | 4176.08 | 28.34 | 8.22 |
ABC | 17,955.12 | 387.35 | 365.28 | |
HA | 4157.85 | 26.27 | 7.74 | |
DTSA | 4230.45 | 58.76 | 9.93 | |
DJAYA | 4095.02 | 42.54 | 6.12 | |
QSA-DJAYA | 4011.10 | 8.61 | 2.35 |
Experiments | Algorithm | Decision | ||
---|---|---|---|---|
Experiment 1-1 | QSA-DJAYA vs. GA | 65 | 127 | Negate the null hypothesis. |
QSA-DJAYA vs. ACO | 101 | 127 | Negate the null hypothesis. | |
QSA-DJAYA vs. SA | 100 | 127 | Negate the null hypothesis. | |
QSA-DJAYA vs. DJAYA | 100 | 127 | Negate the null hypothesis. | |
Experiment 1-2 | QSA-DJAYA vs. GA | 21 | 13 | Retain the null hypothesis. |
QSA-DJAYA vs. ACO | 14 | 13 | Retain the null hypothesis. | |
QSA-DJAYA vs. SA | 15 | 13 | Retain the null hypothesis. | |
QSA-DJAYA vs. DJAYA | 14 | 13 | Retain the null hypothesis. | |
Experiment 1-2 | QSA-DJAYA vs. GA | 21 | 13 | Retain the null hypothesis. |
QSA-DJAYA vs. ACO | 14 | 13 | Retain the null hypothesis. | |
QSA-DJAYA vs. SA | 15 | 13 | Retain the null hypothesis. | |
QSA-DJAYA vs. DJAYA | 14 | 13 | Retain the null hypothesis. | |
Experiment 2-1 | QSA-DJAYA vs. ACO | -2 | 8 | Negate the null hypothesis. |
QSA-DJAYA vs. PSO | 8 | 8 | Retain the null hypothesis. | |
QSA-DJAYA vs. GA | -2 | 8 | Negate the null hypothesis. | |
QSA-DJAYA vs. BH | -2 | 8 | Negate the null hypothesis. | |
Experiment 2-2 | QSA-DJAYA vs. ACO | 27 | 23 | Retain the null hypothesis. |
QSA-DJAYA vs. ABC | 19 | 23 | Negate the null hypothesis. | |
QSA-DJAYA vs. HA | 27 | 23 | Retain the null hypothesis. | |
QSA-DJAYA vs. DTSA | 26 | 23 | Retain the null hypothesis. | |
QSA-DJAYA vs. DJAYA | 27 | 23 | Retain the null hypothesis. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Hu, W.; Gu, W.; Yu, Y. A Discrete JAYA Algorithm Based on Reinforcement Learning and Simulated Annealing for the Traveling Salesman Problem. Mathematics 2023, 11, 3221. https://doi.org/10.3390/math11143221
Xu J, Hu W, Gu W, Yu Y. A Discrete JAYA Algorithm Based on Reinforcement Learning and Simulated Annealing for the Traveling Salesman Problem. Mathematics. 2023; 11(14):3221. https://doi.org/10.3390/math11143221
Chicago/Turabian StyleXu, Jun, Wei Hu, Wenjuan Gu, and Yongguang Yu. 2023. "A Discrete JAYA Algorithm Based on Reinforcement Learning and Simulated Annealing for the Traveling Salesman Problem" Mathematics 11, no. 14: 3221. https://doi.org/10.3390/math11143221
APA StyleXu, J., Hu, W., Gu, W., & Yu, Y. (2023). A Discrete JAYA Algorithm Based on Reinforcement Learning and Simulated Annealing for the Traveling Salesman Problem. Mathematics, 11(14), 3221. https://doi.org/10.3390/math11143221