The Yamaguchi–Noshiro Type of Bi-Univalent Functions Connected with the Linear q-Convolution Operator
Abstract
:1. Introduction
2. Coefficient Bounds
3. Fekete–Szegö Inequalities
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duren, P.L. Univalent Functions. In Grundlehren der Mathematischen Wissenschaften, Band 259; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983. [Google Scholar]
- El-Deeb, S.M.; Bulboacă, T.; El-Matary, B.M. Maclaurin Coefficient estimates of bi-univalent functions connected with the q-derivative. Mathematics 2020, 8, 418. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; El-Deeb, S.M. The Faber polynomial expansion method and the Taylor-Maclaurin coefficient estimates of bi-close-to-convex functions connected with the q-convolution. AIMS Math. 2020, 5, 7087–7106. [Google Scholar] [CrossRef]
- Hadi, S.H.; Darus, M.; Ghanim, F.; Lupaş, A.A. Sandwich-type theorems for a family of non-Bazilevič functions involving a q-analog integral operator. Mathematics 2023, 11, 2479. [Google Scholar] [CrossRef]
- Hadi, S.H.; Darus, M. A class of harmonic (p,q)-starlike functions involving a generalized (p,q)-Bernardi integral operator. Probl. Anal. Issues Anal. 2023, 12, 17–36. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 1909, 46, 253–281. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Srivastava, H.M.; Khan, S.; Ahmad, Q.Z.; Khan, N.; Hussain, S. The Faber polynomial expansion method and its application to the general coefficient problem for some subclasses of bi-univalent functions associated with a certain q-integral operator. Stud. Univ. Babeş-Bolyai Math. 2018, 63, 419–436. [Google Scholar] [CrossRef]
- El-Deeb, S.M.; Bulboacă, T. Fekete-Szego, inequalities for certain class of analytic functions connected with q-anlogue of Bessel function. J. Egypt. Math. Soc. 2019, 27, 42. [Google Scholar] [CrossRef] [Green Version]
- El-Deeb, S.M. Maclaurin coefficient estimates for new subclasses of bi-univalent functions connected with a q-analogue of Bessel function. Abstr. Appl. Anal. 2020, 2020, 8368951. [Google Scholar] [CrossRef]
- El-Deeb, S.M.; Bulboacă, T. Differential sandwich-type results for symmetric functions connected with a q-analog integral operator. Mathematics 2019, 7, 1185. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; El-Deeb, S.M. A certain class of analytic functions of complex order connected with a q-analogue of integral operators. Miskolc Math. Notes 2020, 21, 417–433. [Google Scholar] [CrossRef]
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Brannan, D.A.; Clunie, J.G. Aspects of Contemporary Complex Analysis. In Proceedings of the NATO Advanced Study Institute Held at the University of Durham, Durham, UK, 1–20 July 1979; Academic Press: New York, NY, USA; London, UK, 1980. [Google Scholar]
- Netanyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z| < 1. Arch. Rational Mech. Anal. 1969, 32, 100–112. [Google Scholar]
- Brannan, D.A.; Clunie, J.; Kirwan, W.E. Coefficient estimates for a class of star-like functions. Canad. J. Math. 1970, 22, 476–485. [Google Scholar] [CrossRef]
- Akgül, A.; Sakar, F.M. A certain subclass of bi-univalent analytic functions introduced by means of the q-analogue of Noor integral operator and Horadam polynomials. Turk. J. Math. 2019, 43, 2275–2286. [Google Scholar] [CrossRef]
- Akgül, A.; Sakar, F.M. A new characterization of (P, Q)-Lucas polynomial coefficients of the bi-univalent function class associated with q-analogue of Noor integral operator. Afr. Mat. 2022, 33, 87. [Google Scholar] [CrossRef]
- El-Deeb, S.M.; El-Matary, B.M. Subclasses of bi-univalent functions associated with q-confluent hypergeometric distribution based upon the Horadam polynomials. Adv. Theory Nonlinear Anal. Appl. 2021, 5, 82–93. [Google Scholar]
- Frasin, B.A.; Aouf, M.K. New subclasses of bi-univalent functions. Appl. Math. Lett. 2011, 24, 1569–1973. [Google Scholar] [CrossRef] [Green Version]
- Hadi, S.H.; Darus, M.; Bulboacă, T. Bi-univalent functions of order U3b6 connected with (m,n)-Lucas polynomials. J. Math. Comput. Sci. 2023, 31, 433–447. [Google Scholar] [CrossRef]
- Lupaş, A.A.; El-Deeb, S.M. Subclasses of bi-univalent functions connected with integral operator based upon Lucas polynomial. Symmetry 2022, 14, 622. [Google Scholar] [CrossRef]
- Magesh, N.; El-Deeb, S.M.; Themangani, R. Classes of bi-univalent functions defined by convolution. South East Asian J. Math. Math. Sci. 2020, 16, 1–15. [Google Scholar]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef] [Green Version]
- Taha, T.S. Topics in Univalent Function Theory. Ph.D. Thesis, University of London, London, UK, 1981. [Google Scholar]
- Xu, Q.-H.; Gui, Y.-C.; Srivastava, H.M. Coefficient estimates for a certain subclass of analytic and bi-univalent functions. Appl. Math. Lett. 2012, 25, 990–994. [Google Scholar] [CrossRef] [Green Version]
- Noshiro, K. On the theory of schlicht functions. J. Fac. Sci. Hokkaido Univ. Ser. 1934, 2, 129–155. [Google Scholar] [CrossRef]
- Yamaguchi, K. On functions satisfying ℜf(z)/z > 0. Proc. Am. Math. Soc. 1966, 17, 588–591. [Google Scholar]
- Fekete, M.; Szegö, G. Eine Bemerkung über ungerade schlichte Functionen. J. Lond. Math. Soc. 1933, 8, 85–89. [Google Scholar] [CrossRef]
- Zaprawa, P. On the Fekete-Szegö problem for classes of bi-univalent functions. Bull. Belg. Math. Soc. Simon Stevin 2014, 21, 169–178. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Breaz, D.; El-Deeb, S.M.; Aydoǧan, S.M.; Sakar, F.M. The Yamaguchi–Noshiro Type of Bi-Univalent Functions Connected with the Linear q-Convolution Operator. Mathematics 2023, 11, 3363. https://doi.org/10.3390/math11153363
Breaz D, El-Deeb SM, Aydoǧan SM, Sakar FM. The Yamaguchi–Noshiro Type of Bi-Univalent Functions Connected with the Linear q-Convolution Operator. Mathematics. 2023; 11(15):3363. https://doi.org/10.3390/math11153363
Chicago/Turabian StyleBreaz, Daniel, Sheza M. El-Deeb, Seher Melike Aydoǧan, and Fethiye Müge Sakar. 2023. "The Yamaguchi–Noshiro Type of Bi-Univalent Functions Connected with the Linear q-Convolution Operator" Mathematics 11, no. 15: 3363. https://doi.org/10.3390/math11153363
APA StyleBreaz, D., El-Deeb, S. M., Aydoǧan, S. M., & Sakar, F. M. (2023). The Yamaguchi–Noshiro Type of Bi-Univalent Functions Connected with the Linear q-Convolution Operator. Mathematics, 11(15), 3363. https://doi.org/10.3390/math11153363