Three Edge-Disjoint Hamiltonian Cycles in Folded Locally Twisted Cubes and Folded Crossed Cubes with Applications to All-to-All Broadcasting
Abstract
:1. Introduction
2. Preliminaries
- (1)
- LTQ1 is the complete graph on two vertices labeled by 0 and 1. LTQ2 is a graph consisting of four vertices with labels 00, 01, 10, and 11 together with four edges (00, 01), (00, 10), (01, 11), and (10, 11).
- (2)
- For n ≥ 3, LTQn is composed of two subcubes LTQn−1, denoted as LTQn−10 and LTQn−11, such that each vertex x = 0xn−1xn−2 ⋯ x2x1 ∈ V(LTQ n−10) is connected with the vertex y = 1(xn−1⊕x1) xn−2 ⋯ x2x1 ∈ V(LTQ n−11) by an edge, where x and y are called the n-neighbors to each other.
- (1)
- unun−1⋯ ui+1= vnvn−1⋯ vi+1;
- (2)
- ui ≠ vi;
- (3)
- ui−1= vi−1if i is even;
- (4)
- u2ku2k−1∼ v2kv2k−1for 1 ≤ k ≤ ⌈(i – 1) / 2⌉.
3. Methods and Results
3.1. Three EDHCs in FLTQn
Algorithm 1: Constructing 3 EDHCs in FLTQ5 |
Input: FLTQ5 |
Output: 3 EDHCs HC1′, HC2′, HC3′ |
Step 1 HC1 = 0 - 1 - 13 - 15 - 9 - 11 - 7 - 6 - 14 - 12 - 8 - 10 - 2 - 3 - 5 - 4 - 0; Step 2 HC2 = 0 - 2 - 6 - 4 - 12 - 13 - 11 - 10 - 14 - 15 - 3 - 1 - 7 - 5 - 9 - 8 - 0; Step 3 E(HC1′) = E(HC10) ∪ E(HC11) ∪ {(0, 16), (4, 20)} – {(0, 4), (16, 20)}; Step 4 E(HC2′) = E(HC20) ∪ E(HC21) ∪ {(2, 18), (6, 22)} – {(2, 6), (18, 22)}; Step 5 C16A = 0 - 4 - 27 - 3 - 28 - 12 - 19 - 11 - 20 - 16 - 15 - 23 - 8 - 24 - 7 - 31 - 0; Step 6 C16B = 1 - 25 - 6 - 2 - 29 - 5 - 26 - 10 - 21 - 13 - 18 - 22 - 9 - 17 - 14 - 30 - 1; Step 7 E(HC3′) = E(C16A) ∪ E(C16B) ∪ {(1, 3), (5, 7), (27, 29), (30, 31)} – {(1, 30), (3, 27), (5, 29), (7, 31)}; Step 8 E(HC2′) = E(HC2′) ∪ {(1, 30), (3, 27), (5, 29), (7, 31)} − {(1, 3), (5, 7), (27, 29), (30, 31)}; Step 9 Return HC1′, HC2′, HC3′; |
3.2. Three EDHCs in FCQn
Algorithm 2: Constructing 3 EDHCs in FCQ5 |
Input: FCQ5 |
Output: 3 EDHCs HC1′, HC2′, HC3′ |
Step 1 HC1 = 0 - 2 - 6 - 4 - 12 - 13 - 11 - 10 - 14 - 15 - 5 - 7 - 1 - 3 - 9 - 8 - 0; Step 2 HC2 = 0 - 1 - 11 - 9 - 15 - 13 - 7 - 6 - 14 - 12 - 8 - 10 - 2 - 3 - 5 - 4 - 0; Step 3 E(HC1′) = E(HC10) ∪ E(HC11) ∪ {(0, 16), (2, 18)} – {(0, 2), (16, 18)}; Step 4 E(HC2′) = E(HC20) ∪ E(HC21) ∪ {(8, 24), (10, 26)} – {(8, 10), (24, 26)}; Step 5 C8A = 0 - 2 - 29 - 7 - 24 - 26 - 5 - 31 - 0; Step 6 C8B = 1 - 19 - 12 - 20 - 11 - 25 - 6 - 30 - 1; Step 7 C8C = 3 - 17 - 14 - 22 - 9 - 27 - 4 - 28 - 3; Step 8 C16D = 8 - 10 - 21 - 15 - 16 - 18 - 13 - 23 - 8; Step 9 E(HC3′) = E(C8A) ∪ E(C8B) ∪ E(C8C) ∪ E(C8D) ∪ {(0, 1), (2, 3), (16, 17), (18, 19)} – {(0, 2), (1, 19), (3, 17), (16, 18)}; Step 10 E(HC2′) = E(HC2′) ∪ {(0, 2), (1, 19), (3, 17), (16, 18)} – {(0, 1), (2, 3), (16, 17), (18, 19)}; Step 11 Return HC1′, HC2′, HC3′; |
4. Performance Evaluation
5. Discussion
- According to the main Theorems 3 and 4, there exist three edge-disjoint Hamiltonian cycles in FLTQn and FCQn while n ≥ 5. The research results provide three EDHCs as broadcasting channels and transmission in two directions, no matter what scale of FLTQn and FCQn for 5 ≤ n ≤ 9, its transmission can reach 100% success when the number of faulty edges m ≤ 5. The intuitive prediction is that BSR should present a decreasing function to the number of faulty edges. As expected, all simulations are consistent with this phenomenon. For example, take FCQ5 in Table 5 as an example for illustration. If BSR ≥ 80% is required, then it only allows seven faulty edges. It can tolerate eight faulty edges while allowing no more than half of the broadcasts to fail. Accordingly, this means that the least number of faulty edges, the larger the corresponding BSR.
- For m ≥ 6, BSR increases with expanding the scale of FLTQn and FCQn. The reason is obvious since when m is fixed, the edge failures that occur in Hamiltonian cycles will reduce their probability as the network expands, thus leading to an increase in the success rate. For example, take FLTQ5 and FLTQ6 in Table 1 as an example for illustration. All edges of FLTQ5 are used in 3 EDHCs, but 6/7 edges of FLTQ6 are used in 3 EDHCs. When m = 10, BSR increases from 0.348 in FLTQ5 to 0.545 in FLTQ6.
- For m ≥ 6, the number of unreachable nodes increases with expanding the scale of FLTQn and FCQn. The size of Hamiltonian cycles is equal to the size of the network. The larger the scale of networks, the larger the number of unreachable nodes. For example, take FCQ8 and FCQ9 in Table 8 as an example for illustration. The size of FCQn is 2n, then |V(FCQ8)| = 256 and |V(FCQ9)| = 512. When m = 10, the mean of the unreachable nodes increases from 37.3 in FCQ8 to 80.8 in FCQ9.
- In this paper, three EDHCs of FLTQn (respectively, FCQn) are compared with the two EDHCs of LTQn [11] (respectively, CQn [14]). According to Figure 9a and Figure 10a, the BSR of three EDHCs is better than that of two EDHCs in both FLTQn and FCQn. Moreover, the smaller the size of the network, the greater the gap between the BSRs. In addition, observing Figure 9b and Figure 10b, it can be found that the average number of unreachable nodes of the three EDHCs is 0.3~0.7 of that of the two EDHCs. In broadcast applications on FLTQn and FCQn, the three EDHCs in this paper are better than the two EDHCs in [11,14].
6. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Conflicts of Interest
References
- Saad, Y.; Schultz, M.H. Topological properties of hypercubes. IEEE Trans. Comput. 1988, 37, 867–872. [Google Scholar] [CrossRef]
- Wang, D. A low-cost fault-tolerant structure for the hypercube. J. Supercomput. 2001, 20, 203–216. [Google Scholar] [CrossRef]
- Lin, T.-J.; Hsieh, S.-Y.; Juan, J.S.-T. Embedding cycles and paths in product networks and their applications to multiprocessor systems. IEEE Trans. Parallel Distrib. Syst. 2012, 23, 1081–1089. [Google Scholar]
- Wang, N.-C.; Yen, C.-P.; Chu, C.-P. Multicast communication in wormhole-routed symmetric networks with Hamiltonian cycle model. J. Syst. Arch. 2005, 51, 165–183. [Google Scholar] [CrossRef]
- Sabrigiriraj, M.; Manoharan, K. Wavelength allocation for all-to-all broadcast in bidirectional optical WDM modified ring. Optik 2019, 179, 545–556. [Google Scholar] [CrossRef]
- Bae, M.M.; Bose, B. Edge disjoint Hamiltonian cycles in k-ary n-cubes and hypercubes. IEEE Trans. Comput. 2003, 52, 1271–1284. [Google Scholar] [CrossRef]
- Rowley, R.; Bose, B. Edge disjoint Hamiltonian cycles in de Bruijn networks. In Proceedings of the 6th Distributed Memory Computing Conference, Portland, OR, USA, 28 April–1 May 1991; pp. 707–709. [Google Scholar]
- Barth, D.; Raspaud, A. Two edge-disjoint Hamiltonian cycles in the butterfly graph. Inform. Process. Lett. 1994, 51, 175–179. [Google Scholar] [CrossRef]
- Lee, S.; Shin, K. Interleaved all-to-all reliable broadcast on meshes and hypercubes. IEEE Trans. Parallel Distrib. Syst. 1994, 5, 449–458. [Google Scholar]
- Petrovic, V.; Thomassen, C. Edge-disjoint Hamiltonian cycles in hypertournaments. J. Graph. Theory 2006, 51, 49–52. [Google Scholar]
- Hung, R.W. Embedding two edge-disjoint Hamiltonian cycles into locally twisted cubes. Theoret. Comput. Sci. 2011, 412, 4747–4753. [Google Scholar] [CrossRef] [Green Version]
- Hung, R.W. Constructing two edge-disjoint Hamiltonian cycles and two-equal path cover in augmented cubes. J. Comput. Sci. 2012, 39, 42–49. [Google Scholar]
- Hung, R.W.; Chan, S.J.; Liao, C.C. Embedding two edge-disjoint Hamiltonian cycles and two equal node-disjoint cycles into twisted cubes. Lect. Notes Eng. Comput. Sci. 2012, 2195, 362–367. [Google Scholar]
- Hung, R.W. The property of edge-disjoint Hamiltonian cycles in transposition networks and hypercube-like networks. Discret. Appl. Math. 2015, 181, 109–122. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, J.; Liu, W.; Wang, X. Embedding Two Edge-Disjoint Hamiltonian Cycles into Parity Cubes. Appl. Mech. Mater. 2013, 336, 2248–2251. [Google Scholar]
- Hussain, Z.A.; Bose, B.; Al-Dhelaan, A. Edge disjoint Hamiltonian cycles in Eisenstein-Jacobi networks. J. Parallel Distrib. Comput. 2015, 86, 62–70. [Google Scholar] [CrossRef] [Green Version]
- Albader, B.; Bose, B. Edge Disjoint Hamiltonian Cycles in Gaussian Networks. IEEE Trans. Comput. 2016, 65, 315–321. [Google Scholar]
- Yang, D.W.; Xu, Z.; Feng, Y.Q.; Lee, J. Symmetric property and edge-disjoint Hamiltonian cycles of the spined cube. Appl. Math. Comput. 2023, 452, 128075. [Google Scholar] [CrossRef]
- Cheng, D. Recursive definition and two edge-disjoint Hamiltonian cycles of bubble-sort star graphs. Int. J. Comput. Math. Comput. Syst. Theory 2023, 8, 152–159. [Google Scholar] [CrossRef]
- Pai, K.J. A parallel algorithm for constructing two edge-disjoint Hamiltonian cycles in crossed cubes. In AAIM 2020: Algorithmic Aspects in Information and Management, Proceedings of the 14th International Conference on Algorithmic Applications in Management, Jinhua, China, 10–12 August 2020; Zhang, Z., Li, W., Du, D.Z., Eds.; Springer: Cham, Switzerland, 2020; Volume 12290, pp. 448–455. [Google Scholar]
- Li, S.Y.; Chang, J.M.; Pai, K.J. A Parallel Algorithm for Constructing Two Edge-disjoint Hamiltonian Cycles in Locally Twisted Cubes. In Proceedings of the 2020 International Computer Symposium, Tainan, Taiwan, 17–19 December 2020; pp. 116–119. [Google Scholar]
- Pai, K.J. Embedding Three Edge-Disjoint Hamiltonian Cycles into Locally Twisted Cubes. In COCOON 2021: Computing and Combinatorics, Proceedings of the International Computing and Combinatorics Conference, Tainan, Taiwan, 24–26 October 2021; Chen, C.Y., Hon, W.K., Hung, L.J., Lee, C.W., Eds.; Springer: Cham, Switzerland, 2021; Volume 13025, pp. 367–374. [Google Scholar]
- Pai, K.J.; Wu, R.Y.; Peng, S.L.; Chang, J.M. Three edge-disjoint Hamiltonian cycles in crossed cubes with applications to fault-tolerant data broadcasting. J. Supercomput. 2023, 79, 4126–4145. [Google Scholar] [CrossRef]
- Yang, X.; Evans, D.J.; Megson, G.M. The locally twisted cubes. Int. J. Comput. Math. 2005, 82, 401–413. [Google Scholar] [CrossRef]
- Peng, S.; Guo, C.; Yang, B. Topological properties of folded locally twisted cubes. J. Comput. Inform. Syst. 2015, 11, 7667–7676. [Google Scholar]
- Efe, K. The crossed cube architecture for parallel computation. IEEE Trans. Parallel Distrib. Syst. 1992, 3, 513–524. [Google Scholar] [CrossRef]
- Simulation Results for Evaluating the Performance of Fault-Tolerant Data Broadcasting in FLTQn and FLTQn Using Three EDHCs. Available online: http://210.240.238.53/threeHC1 (accessed on 1 June 2023).
m | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
FLTQ5 | 1.000 | 1.000 | 1.000 | 0.943 | 0.829 | 0.686 | 0.540 | 0.410 | 0.303 | 0.216 |
FLTQ6 | 1.000 | 1.000 | 1.000 | 0.970 | 0.903 | 0.807 | 0.696 | 0.583 | 0.476 | 0.382 |
FLTQ7 | 1.000 | 1.000 | 1.000 | 0.984 | 0.942 | 0.877 | 0.795 | 0.704 | 0.612 | 0.522 |
FLTQ8 | 1.000 | 1.000 | 1.000 | 0.990 | 0.963 | 0.918 | 0.858 | 0.786 | 0.709 | 0.629 |
FLTQ9 | 1.000 | 1.000 | 1.000 | 0.993 | 0.975 | 0.943 | 0.898 | 0.842 | 0.779 | 0.711 |
m | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
FLTQ5 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.930 | 0.796 | 0.636 | 0.481 | 0.348 |
FLTQ6 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.970 | 0.897 | 0.790 | 0.668 | 0.545 |
FLTQ7 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.989 | 0.955 | 0.897 | 0.820 | 0.730 |
FLTQ8 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.994 | 0.976 | 0.940 | 0.887 | 0.822 |
FLTQ9 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.997 | 0.987 | 0.967 | 0.934 | 0.889 |
m | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|
FLTQ5 | 6.7 (5.8) | 7.5 (6.1) | 8.3 (6.4) | 9.2 (6.7) | 10.1 (6.9) |
FLTQ6 | 13.8 (11.7) | 15.1 (12.2) | 16.4 (12.6) | 17.8 (13.1) | 19.3 (13.4) |
FLTQ7 | 28.0 (23.1) | 30.0 (23.9) | 32.1 (24.6) | 34.5 (25.5) | 36.8 (26.1) |
FLTQ8 | 56.2 (45.6) | 59.5 (46.8) | 63.2 (48.3) | 66.9 (49.5) | 70.6 (50.8) |
FLTQ9 | 112.1 (89.8) | 118.1 (92.1) | 123.9 (94.7) | 130.0 (96.8) | 136.1 (98.9) |
m | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|
FLTQ5 | 2.5 (2.7) | 3.0 (3.2) | 3.6 (3.5) | 4.3 (4.0) | 5.0 (4.4) |
FLTQ6 | 4.6 (5.3) | 5.4 (5.9) | 6.3 (6.6) | 7.3 (7.3) | 8.4 (8.0) |
FLTQ7 | 9.1 (10.4) | 10.2 (11.3) | 11.4 (12.1) | 12.8 (13.1) | 14.2 (14.0) |
FLTQ8 | 25.3 (27.4) | 28.2 (29.4) | 31.1 (31.5) | 34.1 (33.3) | 37.4 (35.1) |
FLTQ9 | 58.9 (61.4) | 65.9 (65.7) | 70.1 (67.8) | 74.8 (70.5) | 81.1 (73.7) |
m | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
FCQ5 | 1.000 | 1.000 | 1.000 | 0.943 | 0.830 | 0.688 | 0.542 | 0.412 | 0.304 | 0.218 |
FCQ6 | 1.000 | 1.000 | 1.000 | 0.970 | 0.901 | 0.804 | 0.692 | 0.578 | 0.471 | 0.375 |
FCQ7 | 1.000 | 1.000 | 1.000 | 0.983 | 0.941 | 0.875 | 0.793 | 0.701 | 0.607 | 0.516 |
FCQ8 | 1.000 | 1.000 | 1.000 | 0.990 | 0.963 | 0.917 | 0.857 | 0.785 | 0.707 | 0.627 |
FCQ9 | 1.000 | 1.000 | 1.000 | 0.993 | 0.975 | 0.942 | 0.897 | 0.842 | 0.778 | 0.709 |
m | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
FCQ5 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.933 | 0.802 | 0.645 | 0.492 | 0.360 |
FCQ6 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.970 | 0.898 | 0.792 | 0.670 | 0.547 |
FCQ7 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.989 | 0.955 | 0.896 | 0.818 | 0.727 |
FCQ8 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.994 | 0.940 | 0.940 | 0.888 | 0.821 |
FCQ9 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.997 | 0.987 | 0.967 | 0.934 | 0.889 |
M | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|
FCQ5 | 6.3 (5.5) | 7.0 (5.8) | 7.8 (6.1) | 8.6 (6.4) | 9.5 (6.7) |
FCQ6 | 13.4 (11.4) | 14.6 (11.9) | 15.9 (12.4) | 17.3 (12.8) | 18.7 (13.2) |
FCQ7 | 27.4 (23.0) | 29.5 (23.9) | 31.6 (24.6) | 33.9 (25.4) | 36.2 (26.1) |
FCQ8 | 55.3 (45.4) | 59.0 (46.9) | 62.6 (48.4) | 66.3 (49.6) | 70.2 (50.8) |
FCQ9 | 111.9 (90.4) | 116.7 (92.0) | 123.2 (94.6) | 129.7 (96.9) | 136.0 (99.2) |
m | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|
FCQ5 | 2.6 (2.7) | 3.1 (3.1) | 3.6 (3.6) | 4.3 (3.9) | 5.0 (4.3) |
FCQ6 | 4.4 (5.0) | 5.2 (5.7) | 6.0 (6.4) | 7.0 (7.1) | 8.1 (7.7) |
FCQ7 | 9.3 (10.6) | 10.3 (11.4) | 11.6 (12.4) | 12.9 (13.3) | 14.4 (14.3) |
FCQ8 | 25.3 (27.6) | 31.0 (31.5) | 31.0 (31.5) | 33.9 (33.3) | 37.3 (35.2) |
FCQ9 | 60.0 (62.6) | 64.9 (64.3) | 70.2 (67.5) | 75.5 (70.8) | 80.8 (73.8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pai, K.-J. Three Edge-Disjoint Hamiltonian Cycles in Folded Locally Twisted Cubes and Folded Crossed Cubes with Applications to All-to-All Broadcasting. Mathematics 2023, 11, 3384. https://doi.org/10.3390/math11153384
Pai K-J. Three Edge-Disjoint Hamiltonian Cycles in Folded Locally Twisted Cubes and Folded Crossed Cubes with Applications to All-to-All Broadcasting. Mathematics. 2023; 11(15):3384. https://doi.org/10.3390/math11153384
Chicago/Turabian StylePai, Kung-Jui. 2023. "Three Edge-Disjoint Hamiltonian Cycles in Folded Locally Twisted Cubes and Folded Crossed Cubes with Applications to All-to-All Broadcasting" Mathematics 11, no. 15: 3384. https://doi.org/10.3390/math11153384
APA StylePai, K. -J. (2023). Three Edge-Disjoint Hamiltonian Cycles in Folded Locally Twisted Cubes and Folded Crossed Cubes with Applications to All-to-All Broadcasting. Mathematics, 11(15), 3384. https://doi.org/10.3390/math11153384