On a New Approach for Stability and Controllability Analysis of Functional Equations
Abstract
:1. Introduction and Preliminaries
- (1)
- (boundary condition);
- (2)
- (commutativity);
- (3)
- (associativity);
- (4)
- (monotonicity).
- (1)
- Let , such that,
- (2)
- Let , such that,
- (3)
- Let , such that,
- is continuous;
- is non-decreasing, for every
- for every
- (1)
- for any ;
- (2)
- , for any ;
- (3)
- for any .
- (1)
- for all , we get
- (2)
- for all , we get
- (3)
- for all , we get
- (1)
- ;
- (2)
- The fixed point of Γ is a convergence point of the sequence and is unique in the set ;
- (3)
- for every .
2. Tri-Additive -Functional Inequality (1)
- (1)
- is a fixed point of , i.e.,
- (2)
- as . This implies the following equality
- (3)
- , which implies that
3. Permuting Tri-Derivations on MFB-Algebras
4. Permuting Tri-Homomorphisms in MFC-⋄-Aalgebras
5. Application
- The arithmetic mean function and the geometric mean function are respectively given by
- For every the projection function and the order statistic function associated with the argument, are respectively given byThe projections onto the first and the last coordinates are given byAlso, the extreme order statistics and are the minimum and maximum functions, respectively,Note that can be shown in terms of only minima and maxima as followsSimilarly, the median of an odd number of values is given byFor instance, we getFor an even number of values the median is given byFor every we also define the median, by
- For every the partial minimum and the partial maximum associated with K, are respectively given by
- For every weight vector s.t. the weighted arithmetic mean function and the ordered weighted averaging function associated with , are respectively given by
- The sum and product functions are respectively given by
- The one parameter Mittag-Leffler function [43]:
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ulam, S.M. A Collection of the Mathematical Problems; Interscience Publ.: New York, NY, USA, 1960. [Google Scholar]
- Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brillouet-Belluot, N.; Brzdek, J.; Cieplinski, K. On some recent developments in Ulam’s type stability. Abstr. Appl. Anal. 2012, 2012, 716936. [Google Scholar] [CrossRef]
- Brzdek, J. On functionals which are orthogonally additive modulo Z. Results Math. 1996, 30, 25–38. [Google Scholar] [CrossRef]
- Brzdek, J. On the Cauchy difference on normed spaces. Abh. Math. Sem. Univ. Hamburg 1996, 66, 143–150. [Google Scholar] [CrossRef]
- Brzdek, J. A Note on Stability of Additive Mappings. Stability of Mappings of Hyers-Ulam Type; Hadronic Press: Palm Harbor, FL, USA, 1994. [Google Scholar]
- Benzarouala, C.; Brzdek, J.; Oubbi, L. A fixed point theorem and Ulam stability of a general linear functional equation in random normed spaces. J. Fixed Point Theory Appl. 2023, 25, 33. [Google Scholar] [CrossRef]
- Brzdek, J. Banach limit, fixed points and Ulam stability. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 2022, 116, 79. [Google Scholar] [CrossRef]
- Brzdek, J.; Cieplinski, K. Hyperstability and superstability. Abstr. Appl. Anal. 2013, 2013, 401756. [Google Scholar] [CrossRef] [Green Version]
- Gajda, Z.; Kominek, Z. On separation theorems for subadditive and superadditive functionals. Studia Math. 1991, 100, 25–38. [Google Scholar] [CrossRef] [Green Version]
- Ger, R.; Semrl, P. The stability of the exponential equation. Proc. Am. Math. Soc. 1996, 124, 779–787. [Google Scholar] [CrossRef]
- Sikorska, J. Orthogonalities and functional equations. Aequationes Math. 2015, 89, 215–277. [Google Scholar] [CrossRef] [Green Version]
- Fechner, W.; Sikorska, J. On a separation for the Cauchy equation on spheres. Nonlinear Anal. 2012, 75, 6306–6311. [Google Scholar] [CrossRef]
- Forti, G.L.; Schwaiger, J. Stability of homomorphisms and completeness. C. R. Math. Rep. Acad. Sci. Can. 1989, 11, 215–220. [Google Scholar]
- Bourgin, D.G. Classes of transformations and bordering transformations. Bull. Am. Math. Soc. 1951, 57, 223–237. [Google Scholar] [CrossRef] [Green Version]
- Rassias, J.M. Solution of a stability problem of Ulam. In Functional Analysis, Approximation Theory and Numerical Analysis; World Scientific: Singapore, 1994; pp. 241–249. [Google Scholar]
- Aoki, T. On the stability of the linear transformation in Banach spaces. J. Math. Soc. Jpn. 1950, 2, 64–66. [Google Scholar] [CrossRef]
- Obłoza, M. Hyers stability of the linear differential equation. Rocznik Nauk.-Dydakt. Prace Mat. 1993, 13, 259–270. [Google Scholar]
- Obłoza, M. Connections between Hyers and Lyapunov stability of the ordinary differential equations. Rocznik Nauk.-Dydakt. Prace Mat. 1997, 14, 141–146. [Google Scholar]
- Liang, Y.; Shi, Y.; Fan, Z. Exact solutions and Hyers-Ulam stability of fractional equations with double delays. Fract. Calc. Appl. Anal. 2023, 26, 439–460. [Google Scholar] [CrossRef]
- Kahouli, O.; Makhlouf, A.B.; Mchiri, L.; Rguigui, H. Hyers-Ulam stability for a class of Hadamard fractional Itô–Doob stochastic integral equations. Chaos Solitons Fractals 2023, 166, 112918. [Google Scholar] [CrossRef]
- Khan, N.; Ahmad, Z.; Shah, J.; Murtaza, S.; Albalwi, M.D.; Ahmad, H.; Baili, J.; Yao, S.W. Dynamics of chaotic system based on circuit design with Ulam stability through fractal-fractional derivative with power law kernel. Sci. Rep. 2023, 13, 5043. [Google Scholar] [CrossRef] [PubMed]
- Vu, H.; Rassias, J.M.; Hoa, N.V. Hyers-Ulam stability for boundary value problem of fractional differential equations with k-Caputo fractional derivative. Math. Methods Appl. Sci. 2023, 46, 438–460. [Google Scholar] [CrossRef]
- Sivashankar, M.; Sabarinathan, S.; Nisar, K.S.; Ravichandran, C.; Kumar, B.S. Some properties and stability of Helmholtz model involved with nonlinear fractional difference equations and its relevance with quadcopter. Chaos Solitons Fractals 2023, 168, 113161. [Google Scholar] [CrossRef]
- Li, G.; Zhang, Y.; Guan, Y.; Li, W. Stability analysis of multi-point boundary conditions for fractional differential equation with non-instantaneous integral impulse. Math. Biosci. Eng. 2023, 20, 7020–7041. [Google Scholar] [CrossRef]
- Brzdek, J.; Fechner, W.; Moslehian, M.S.; Sikorska, J. Recent developments of the conditional stability of the homomorphism equation. Banach J. Math. Anal. 2015, 9, 278–326. [Google Scholar] [CrossRef]
- Aderyani, S.R.; Saadati, R.; Rassias, T.M.; Srivastava, H.M. Existence, Uniqueness and the Multi-Stability Results for a W-Hilfer Fractional Differential Equation. Axioms 2023, 12, 681. [Google Scholar] [CrossRef]
- Aderyani, S.R.; Saadati, R.; Allahviranloo, T.; Abbasbandy, S.; Catak, M. Fuzzy approximation of a fractional Lorenz system and a fractional financial crisis. Iran. J. Fuzzy Syst. 2023, 20, 27–36. [Google Scholar]
- Park, C.; Najati, A. Homomorphisms and derivations in C * Algebras. Abstr. Appl. Anal. 2007, 2007, 80630. [Google Scholar]
- Park, C.; Rassias, M.T. Additive functional equations and partial multipliers in C*-algebras, Revista de la Real Academia de Ciencias Exactas. Serie A Matemticas 2019, 113, 2261–2275. [Google Scholar]
- Selvan, A.P.; Najati, A. Hyers–Ulam stability and Hyper-stability of a Jensen-type functional equation on 2-Banach spaces. J. Inequalities Appl. 2022, 2022, 32. [Google Scholar] [CrossRef]
- Aderyani, S.R.; Saadati, R. Stability and controllability results by n-ary aggregation functions in matrix valued fuzzy n-normed spaces. Inf. Sci. 2023, 643, 119265. [Google Scholar] [CrossRef]
- Chen, S.; Li, H.L.; Bao, H.; Zhang, L.; Jiang, H.; Li, Z. Global Mittag-Leffler stability and synchronization of discrete-time fractional-order delayed quaternion-valued neural networks. Neurocomputing 2022, 511, 290–298. [Google Scholar] [CrossRef]
- Kaiser, Z.; P’ales, Z. An example of a stable functional equation when the Hyers method does not work. JIPAM J. Inequal. Pure Appl. Math. 2005, 6, 14. [Google Scholar]
- Tabor, J.; Tabor, J. General stability of functional equations of linear type. J. Math. Anal. Appl. 2007, 328, 192–200. [Google Scholar] [CrossRef] [Green Version]
- Sz’ekelyhidi, L. Note on a stability theorem. Can. Math. Bull. 1982, 25, 500–501. [Google Scholar] [CrossRef]
- P’ales, Z. Generalized stability of the Cauchy functional equation. Aequationes Math. 1998, 56, 222–232. [Google Scholar] [CrossRef]
- Baker, J.A. The stability of certain functional equations. Proc. Am. Math. Soc. 1991, 112, 729–732. [Google Scholar] [CrossRef]
- Radu, V. The fixed point alternative and the stability of functional equations. Fixed Point Theory 2003, 4, 91–96. [Google Scholar]
- Halaš, R.; Mesiar, R.; Pócs, J. On the number of aggregation functions on finite chains as a generalization of 470 Dedekind numbers. Fuzzy Sets Syst. 2023, 466, 108441. [Google Scholar] [CrossRef]
- Kurac, Z. Transfer-stable aggregation functions: Applications, challenges, and emerging trends. Decis. Anal. J. 2023, 7, 100210. [Google Scholar] [CrossRef]
- Grabisch, M.; Marichal, J.L.; Mesiar, R.; Pap, E. Aggregation Functions; Cambridge University Press: Cambridge, UK, 2009; Volume 127. [Google Scholar]
- Yang, X.J. Theory and Applications of Special Functions for Scientists and Engineers; Springer: Singapore, 2021. [Google Scholar]
- Zedam, L.; De Baets, B. Triangular norms on bounded trellises. Fuzzy Sets Syst. 2023, 462, 108468. [Google Scholar] [CrossRef]
- Aderyani, S.R.; Saadati, R.; Mesiar, R. Estimation of permuting tri-homomorphisms and permuting tri-derivations associated with the tri-additive Υ-random operator inequality in matrix MB–algebra. Int. J. Gen. Syst. 2022, 51, 547–569. [Google Scholar] [CrossRef]
- Aderyani, S.R.; Saadati, R.; Abdeljawad, T.; Mlaiki, N. Multi-stability of non homogenous vector-valued fractional differential equations in matrix-valued Menger spaces. Alex. Eng. J. 2022, 61, 10913–10923. [Google Scholar] [CrossRef]
- Bae, J.H.; Park, W.G. Approximate bi-homomorphisms and bi-derivations in C∗-ternary algebras. Bull. Korean Math. Soc. 2010, 47, 195–209. [Google Scholar] [CrossRef] [Green Version]
- Park, C.; Jin, Y.; Shin, D.Y.; Zhang, X.; Govindan, V. Permuting triderivations and permuting trihomomorphisms in Banach algebras. Rocky Mt. J. Math. 2020, 5, 1793–1806. [Google Scholar] [CrossRef]
- Youssef, M.I. Generalized fractional delay functional equations with Riemann-Stieltjes and infinite point nonlocal conditions. J. Math. Comput. Sci. 2022, 24, 33–48. [Google Scholar] [CrossRef]
- Jakhar, J.; Chugh, R.; Jakhar, J. Solution and intuitionistic fuzzy stability of 3-dimensional cubic functional equation: Using two different methods. J. Math. Comput. Sci. 2022, 25, 103–114. [Google Scholar] [CrossRef]
- Kumar Senthil, B.V.; Al-Shaqsi, K.; Sabarinathan, S. Dislocated quasi-metric stability of a multiplicative inverse functional equation. J. Math. Comput. Sci. 2022, 24, 140–146. [Google Scholar] [CrossRef]
- Mihet, D. On the stability of the additive Cauchy functional equation in random normed spaces. Appl. Math. Lett. 2011, 24, 2005–2009. [Google Scholar] [CrossRef] [Green Version]
- Park, C. Stability of some set-valued functional equations. Appl. Math. Lett. 2011, 24, 1910–1914. [Google Scholar] [CrossRef] [Green Version]
- Karthikeyan, S.; Park, C.; Palani, P.; Kumar, T.R.K. Stability of an additive-quartic functional equation in modular spaces. J. Math. Comput. Sci. 2022, 26, 22–40. [Google Scholar] [CrossRef]
- Aljoufi, L.S.; Ahmed, A.M.; Mohammady, S.A. On globally asymptotic stability of a fourth-order rational difference equation. J. Math. Comput. Sci. 2022, 27, 176–183. [Google Scholar] [CrossRef]
- Singh, D.K.; Grover, S. On the stability of a sum form functional equation related to entropies of type (α, β). J. Nonlinear Sci. Appl. 2021, 14, 168–180. [Google Scholar] [CrossRef]
- Chalishajar, D.; Ramkumar, K.; Anguraj, A.; Ravikumar, K.; Diop, M.A. Controllability of neutral impulsive stochastic functional integrodifferential equations driven by a fractional Brownian motion with infinite delay via resolvent operator. J. Nonlinear Sci. Appl. 2022, 15, 172–185. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aderyani, S.R.; Saadati, R.; O’Regan, D.; Li, C. On a New Approach for Stability and Controllability Analysis of Functional Equations. Mathematics 2023, 11, 3458. https://doi.org/10.3390/math11163458
Aderyani SR, Saadati R, O’Regan D, Li C. On a New Approach for Stability and Controllability Analysis of Functional Equations. Mathematics. 2023; 11(16):3458. https://doi.org/10.3390/math11163458
Chicago/Turabian StyleAderyani, Safoura Rezaei, Reza Saadati, Donal O’Regan, and Chenkuan Li. 2023. "On a New Approach for Stability and Controllability Analysis of Functional Equations" Mathematics 11, no. 16: 3458. https://doi.org/10.3390/math11163458
APA StyleAderyani, S. R., Saadati, R., O’Regan, D., & Li, C. (2023). On a New Approach for Stability and Controllability Analysis of Functional Equations. Mathematics, 11(16), 3458. https://doi.org/10.3390/math11163458