Next Article in Journal
Risk Assessment Analysis of Multiple Failure Modes Using the Fuzzy Rough FMECA Method: A Case of FACDG
Next Article in Special Issue
On Topological and Metric Properties of ⊕-sb-Metric Spaces
Previous Article in Journal
Process Capability and Performance Indices for Discrete Data
Previous Article in Special Issue
Fuzzy Approximating Metrics, Approximating Parametrized Metrics and Their Relations with Fuzzy Partial Metrics
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On a New Approach for Stability and Controllability Analysis of Functional Equations

1
School of Mathematics, Iran University of Science and Technology, Narmak, Tehran 16844, Iran
2
School of Mathematical and Statistical Sciences, University of Galway, H91 TK33 Galway, Ireland
3
Department of Mathematics and Computer Science, Brandon University, Brandon, MB R7A 6A9, Canada
*
Author to whom correspondence should be addressed.
Mathematics 2023, 11(16), 3458; https://doi.org/10.3390/math11163458
Submission received: 14 July 2023 / Revised: 1 August 2023 / Accepted: 8 August 2023 / Published: 9 August 2023
(This article belongs to the Special Issue Topological Study on Fuzzy Metric Spaces and Their Generalizations)

Abstract

:
We consider a new approach to approximate stability analysis for a tri-additive functional inequality and to obtain the optimal approximation for permuting tri-derivations and tri-homomorphisms in unital matrix algebras via the vector-valued alternative fixed-point theorem, which is a popular technique of proving the stability of functional equations. We also present a small list of aggregation functions on the classical, well-known special functions to investigate the best approximation error estimates using a different concept of perturbation stability.
MSC:
17A40; 39B52; 47B47; 39B62; 46L57

1. Introduction and Preliminaries

In recent years, one of the attractive fields of research in the area of functional equations has been devoted to stability analysis. Stability analysis is a basic character of mathematical analysis and has paramount importance in different areas of science and engineering. In the nineteenth century, Ulam [1] proposed the popular Ulam stability of functional equations that was partially solved by Hyers in the Banach space setting [2]. The problem presented by Ulam inspired well-known mathematician such as Brzdek, Cieplinski, Brillouët–Belluot, Gajda, Ger, Šmerl, Sikorska, Fechner, Forti and others; for details and further references see [3,4,5,6,7,8,9,10,11,12,13,14], in particular Bourgin, who presented in [15] some remarks concerning approximately additive mappings.
In 1978, a new concept of Ulam stability was presented by Rassias which led to the improvement of what is known as Hyers–Ulam–Rassias stability of linear mappings [16]. The results were then improved by Aoki who weakened the condition for the bound of the norm of Cauchy difference [17]. As far as we know, works by Obloza [18,19] were among the first contributions dealing with the Ulam-type stability of ODEs. Since then, the stability results of different classes of ODEs and PDEs of fractional order were explored by using a wide spectrum of methods, see [20,21,22,23,24,25,26]. There are now many research papers in the literature which consider generalizations of Hyers–Ulam–Rassias stability for different types of functional equations, functional inequalities and fractional equations [27,28,29,30,31]. For example, in [32,33] Mittag–Leffler–Hyers–Ulam–Rassias stability, hypergeometric-Hyers–Ulam–Rassias stability, Wright–Hyers–Ulam–Rassias stability, and Fox–Hyers–Ulam–Rassias stability are presented.
Hyers’s method, which was applied in [2], is usually named the direct technique, and has been used for investigating the stability of functional equations. However, this technique sometimes does not work (see [34]). Nevertheless, there are other techniques proving the stability results; for instance: the technique applying the notion of shadowing [35], the technique of invariant means [36] and the technique according to sandwich theorems [37]. In this paper, we propose the fixed-point technique that is the most important technique of proposing the stability of diverse mathematical equations. Although it was applyed for the first time by J. A. Baker [38], who used this technique to gain the stability of a functional equation, most authors follow Radu’s technique [39] and apply the Diaz and Margolis theorem.
The major issue we are studying in this paper is that of aggregation maps which play an important role in several technical tasks scholars are faced with nowadays. The mentioned maps refer to the procedure of combining some inputs into one output. The oldest example is the notion of arithmetic mean which has been used throughout the history of empirical sciences. These maps are applied in both applied and pure mathematics (like: probability, theory of means), social sciences (like: psychology), engineering sciences (like: artificial intelligence, image analysis), as well as many other natural sciences [40,41]. In this paper, we apply n-ary aggregation functions on special functions to define a class of matrix-valued controllers which help us to present a concept of Ulam-type stability. The aggregation functions allow us to obtain the best approximation errors [42]. Recently, special functions like Mittag–Leffler function, hypergeometric function, Wright function, Fox H-function, Fox–Wright function, Meijer G-function, G-function and others have received a lot of attention because of their important roles in finding optimal solutions for different types of mathematical equations and their close relations to problems which come from applications [43].
In the present paper, we propose some novel notions concerning a new type of stability of a tri-additive λ -fuzzy operator inequality in the Mittag–Leffler–Hyers–Ulam–Rassias sense using some special function which include the one-parameter Mittag–Leffler function, the one-parameter pre-supersine function generated by the Mittag–Leffler function, the one-parameter pre-superhyperbolic supersine function generated by the Mittag–Leffler function, the one-parameter pre-supercosine function generated by the Mittag–Leffler function, and the one-parameter pre-superhyperbolic supercosine function generated by the Mittag–Leffler function. In particular, in this paper, we consider the tri-additive λ -fuzzy operator inequality
N ( χ ( λ 1 + λ 2 , λ 3 λ 4 , λ 5 λ 6 ) + χ ( λ 1 λ 2 , λ 3 + λ 4 , λ 5 λ 6 ) 2 χ ( λ 1 , λ 3 , λ 5 ) + 2 χ ( λ 1 , λ 4 , λ 6 ) 2 χ ( λ 2 , λ 3 , λ 6 ) + 2 χ ( λ 2 , λ 4 , λ 5 ) , T ) N ( λ [ 2 χ ( λ 1 + λ 2 2 , λ 3 λ 4 , λ 5 + λ 6 ) + 2 χ ( λ 1 λ 2 2 , λ 3 + λ 4 , λ 5 λ 6 ) 2 χ ( λ 1 , λ 3 , λ 5 ) + 2 χ ( λ 1 , λ 4 , λ 6 ) 2 χ ( λ 2 , λ 3 , λ 6 ) + 2 χ ( λ 2 , λ 4 , λ 5 ) ] , T )
where 0 λ C is fixed and | λ | < 1 . Further, we get an estimation for permuting tri-homomorphisms and tri-derivations in unital matrix FC-⋄-algebras, associated with the above inequality. As an application, we present a small list of aggregation functions to get diverse estimates depending on the input values and to study optimum stability results and minimal errors that provide a unique optimal solution.
Let n N ,   Φ : = [ 0 , 1 ] and the following diagonal matrix defined by
Diagonal Υ n ( Φ ) = ψ 11 0 0 0 ψ 22 0 0 0 ψ n n = Diagonal [ ψ 11 , , ψ n n ] , ψ i i Φ , i = 1 , , n ,
where Diagonal Υ n ( Φ ) is equipped with the partial order relation:
ψ : = Diagonal [ ψ 11 , , ψ n n ] , α : = Diagonal [ α 11 , , α n n ] Diagonal Υ n ( Φ ) , ψ α ψ i i α i i , i N .
Also, ψ α denotes that ψ α and ψ α ; ψ α and ψ i i < α i i , for all i N . We define ϱ : = Diagonal [ ϱ , , ϱ ] in Diagonal Υ n ( Φ ) in which ϱ Φ . For example,
0 : = 0 0 0 0 0 0 0 0 0 n × n = Diagonal [ 0 , , 0 ] n × n ,
and
1 : = 1 0 0 0 1 0 0 0 1 n × n = Diagonal [ 1 , , 1 ] n × n .
Here, we generalize the t-norm TN [44] on Diagonal Υ n ( Φ ) .
Definition 1
([45]). A generalized triangular norm (GTN) on Diagonal Υ n ( Φ ) is an operation GTN : Diagonal Υ n ( Φ ) × Diagonal Υ n ( Φ ) Diagonal Υ n ( Φ ) s.t.,
(1)
( ψ Diagonal Υ n ( Φ ) ) ( ψ GTN 1 ) = ψ ) (boundary condition);
(2)
( ( ψ , α ) ( Diagonal Υ n ( Φ ) ) 2 ) ( ψ GTN α = α GTN ψ ) (commutativity);
(3)
( ( ψ , α , ϕ ) ( Diagonal Υ n ( Φ ) 3 ) ( ψ GTN ( α GTN ϕ ) = ( ψ GTN α ) GTN ϕ ) (associativity);
(4)
( ( ψ , ψ , α , α ) ( Diagonal Υ n ( Φ ) 4 ( ψ ψ a n d α α ψ GTN α ψ GTN α (monotonicity).
For all ψ : = Diagonal [ ψ 11 , , ψ n n ] , α : = Diagonal [ α 11 , , α n n ] Diagonal Υ n ( Φ ) and all sequences { ( ψ i i ) k } and { ( α i i ) k } , with 1 i n and k > 0 , converging to ψ i i and α i i , suppose we have
lim k Diagonal [ ( ψ 11 ) k , , ( ψ n n ) k ] GTN Diagonal [ ( α 11 ) k , , ( α n n ) k ] = Diagonal [ ψ 11 , , ψ n n ] GTN Diagonal [ α 11 , , α n n ] ,
then, GTN on Diagonal Υ n ( Φ ) is a continuous generalized triangular norm (CGTN). Now, we present some examples of continuous generalized triangular norms.
(1)
Let GTN P : Diagonal Υ n ( Φ ) × Diagonal Υ n ( Φ ) Diagonal Υ n ( Φ ) , such that,
ψ GTN P α = Diagonal [ ψ 11 , , ψ n n ] GTN P Diagonal [ α 11 , , α n n ] = Diagonal [ ψ 11 . α 11 , , ψ n n . α n n ] ,
then, GTN P is a CGTN.
(2)
Let GTN M : Diagonal Υ n ( Φ ) × Diagonal Υ n ( Φ ) Diagonal Υ n ( Φ ) , such that,
ψ GTN M α = Diagonal [ ψ 11 , , ψ n n ] GTN M Diagonal [ α 11 , , α n n ] = Diagonal [ min { ψ 11 , α 11 } , , min { ψ n n , α n n } ] ,
then, GTN M is a CGTN.
(3)
Let GTN L : Diagonal Υ n ( Φ ) × Diagonal Υ n ( Φ ) Diagonal Υ n ( Φ ) , such that,
ψ GTN L α = Diagonal [ ψ 11 , , ψ n n ] GTN L Diagonal [ α 11 , , α n n ] = Diagonal [ max { ψ 11 + α 11 1 , 0 } , , max { ψ n n + α n n 1 , 0 } ] ,
then, GTN L is a CGTN.
Here, we present some numeric examples:
Diagonal 1 2 , 0.2 , 1 GTN M Diagonal 3 10 , 0.7 , 0 = 1 2 0.2 1 GTN M 3 10 0.7 0 = 3 10 0.2 0
Diagonal 1 2 , 0.2 , 1 GTN P Diagonal 3 10 , 0.7 , 0 = 1 2 0.2 1 GTN P 3 10 0.7 0 = 3 20 7 50 0
Diagonal 1 2 , 0.2 , 1 GTN L Diagonal 3 10 , 0.7 , 0 = 1 2 0.2 1 GTN L 3 10 0.7 0 = 0 0 0
Then, we get
Diagonal 1 2 , 0.2 , 1 GTN M Diagonal 3 10 , 0.7 , 0 Diagonal 1 2 , 0.2 , 1 GTN P Diagonal 3 10 , 0.7 , 0 Diagonal 1 2 , 0.2 , 1 GTN L Diagonal 3 10 , 0.7 , 0 .
We are interested in defining a multi-control function using some known special functions, and to achieve it, we apply diagonal matrices as the values of control functions instead of finite sequences, because the value of a control function must be a member of a topological monoid with a unit (i.e., 1) with the monotonicity property (Definition 1, (4)).
Let ξ be a vector space and T > 0 . We denote the set of a matrix valued fuzzy set by Λ . Now, N Λ denotes N : ξ × ( 0 , + ) Diagonal Υ n ( Φ ) s.t.,
  • N is continuous;
  • N ( ζ , . ) is non-decreasing, for every ζ ξ ;
  • lim T + ( ζ , T ) = 1 , for every ζ ξ .
In Λ , we denote as follows:
N N N ( ζ , T ) N ( ζ , T ) , T , T > 0 , and ζ ξ .
Definition 2
([45]). Consider the CGTN GTN , a vector space ξ and a matrix valued fuzzy set N : ξ × ( 0 , + ) Diagonal Υ n ( Φ ) . In this case, we define a matrix valued fuzzy norm N as follows:
(D-1) N ( ζ , T ) = 1 for any T > 0 if and only if ζ = 0 ;
(D-2) N ( ȷ ζ , T ) = N ( ζ , T | ȷ | ) for any ζ ξ , T > 0 , and 0 ȷ C ;
(D-3) N ( ζ + ζ , T + T ) N ( ζ , T ) GTN N ( ζ , T ) for all ζ , ζ ξ and T , T 0 ;
(D-4) lim T + N ( ζ , T ) = 1 , for all ζ ξ .
Now, ( ξ , N , GTN ) , is called a matrix valued fuzzy normed space (MFN-space).
For example, the matrix valued fuzzy set N
N ( ζ , T ) = Diagonal exp ( ζ T ) , T T + ζ ,
is a matrix valued fuzzy norm, where T > 0 and ( ξ , N , GTN M ) is an MFN-space and ( ξ , · ) is a linear normed space.
Definition 3
([45]). Consider the MFN-space ( ξ , N , GTN ) and the CGTNs GTN and GTN . If
(D-5) N ( ζ ζ , T T ) N ( ζ , T ) GTN N ( ζ , T ) for any ζ , ζ ξ and any T , T > 0 , then ( ξ , N , GTN , GTN ) is called a matrix fuzzy normed algebra (MFN-algebra).
If
ζ ζ ζ ζ + T ζ + T ζ ( ζ , ζ ( ξ , · ) ; T , T > 0 ) ,
then,
N ( ζ , T ) = Diagonal 1 e ζ T , 1 1 + ζ T ,
for any T > 0 , is a matrix fuzzy normed algebra ( ξ , N , GTN M , GTN P ) and vice versa. A complete matrix fuzzy normed algebra is called a matrix fuzzy Banach algebra (or MFB-algebra).
Let ( ξ , N , GTN , GTN ) be an MFB-algebra. An involution on ξ is a mapping ζ ζ from ξ into ξ , s.t.,
(1)
ζ = ζ for any ζ ξ ;
(2)
( φ ζ + ϕ ζ ) = φ ¯ ζ + ϕ ¯ ζ , for any ζ ξ ;
(3)
( ζ ζ ) = ζ m for any ζ , ζ ξ .
Then, ξ is called an MFB-⋄-algebra. In addition, if N ( ζ ζ , T ) = N ( ζ , T ) for all ζ ξ and T > 0 , then ξ is called an MFC-⋄-algebra.
Here, we denote the unital MFC-⋄-algebra ( ξ , N , GTN , GTN ) with unit e and the unitary group U ( ξ ) = { θ ξ : θ θ = θ θ = e } .
Definition 4
([45]). A mapping ϖ : ν 3 ν is called tri-additive, if
ϖ ( α + ϵ , β , γ ) = ϖ ( α , β , γ ) + ϖ ( ϵ , β , γ ) , ϖ ( α , β + ϵ , γ ) = ϖ ( α , β , γ ) + ϖ ( α , ϵ , γ ) , ϖ ( α , β , γ + ϵ ) = ϖ ( α , β , γ ) + ϖ ( α , β , ϵ ) ,
for every α , γ , β , ϵ ν .
Definition 5
([45]). Consider the ring ν. A tri-additive mapping ϖ : ν 3 ν is a permuting tri-derivation on ν if we have
ϖ ( λ 1 λ 2 , λ 3 , λ 4 ) = ϖ ( λ 1 , λ 3 , λ 4 ) λ 2 + λ 1 ϖ ( λ 2 , λ 3 , λ 4 ) , ϖ ( β ( 1 ) , β ( 2 ) , β ( 3 ) ) = ϖ ( 1 , 2 , 3 )
for all permutations ( β ( 1 ) , β ( 2 ) , β ( 3 ) ) of ( 1 , 2 , 3 ) , and for all λ 1 , , λ 4 , 1 , 2 , 3 ν .
Definition 6
([45]). Consider two complex Banach algebras ν and Θ. A C trilinear mapping ρ : ν 3 Θ is a permuting tri-homomorphism if we have
ρ ( λ 1 λ 2 , λ 3 λ 4 , λ 5 λ 6 ) = ρ ( λ 1 , λ 3 , λ 5 ) ρ ( λ 2 , λ 4 , λ 6 ) , ρ ( β ( 1 ) , β ( 2 ) , β ( 3 ) ) = ρ ( 1 , 2 , 3 )
for all permutations ( β ( 1 ) , β ( 2 ) , β ( 3 ) ) of ( 1 , 2 , 3 ) , and for all λ 1 , , λ 4 , 1 , 2 , 3 ν .
Next, we propose vector valued generalized metric spaces.
Definition 7.
Let = ( 1 , , m ) and γ = ( γ 1 , , γ m ) , m N . Thus, we have
γ j γ j , j = 1 , , m ;
and also
0 j 0 , j = 1 , , m .
Definition 8
([46]). Consider the nonempty set J and a given mapping : J 2 [ 0 , + ] m , m N . A generalized metric ℏ on J is a function s.t.,
(1)
for all ( ϵ 1 , ϵ 2 ) J 2 , we get
( ϵ 1 , ϵ 2 ) = 0 = ( 0 , , 0 ) m ϵ 1 = ϵ 2 ;
(2)
for all ( ϵ 1 , ϵ 2 ) J 2 , we get
( ϵ 1 , ϵ 2 ) = ( ϵ 1 , ϵ 2 ) ϵ 1 = ϵ 2 ;
(3)
for all ϵ 1 , ϵ 2 , ι J , we get
( ϵ 1 , ι ) + ( ι , ϵ 2 ) ( ϵ 1 , ϵ 2 ) .
Theorem 1
([46]). Let m N and consider a function : J 2 [ 0 , + ] m , and a complete generalized metric space ( J , ) . Consider a strictly contractive function Γ : J J with Lipschitz constant T < 1 . Then, for any ϑ J , either
( Γ n ϑ , Γ n + 1 ϑ ) = ( + , , + ) m
for all n N { 0 } or there exists an n 0 N s.t.
(1)
( Γ n ϑ , Γ n + 1 ϑ ) ( + , , + ) m , n n 0 ;
(2)
The fixed point κ of Γ is a convergence point of the sequence { Γ n ϑ } and is unique in the set J = { κ J ( Γ n 0 ϑ , κ ) ( + , , + ) m } ;
(3)
( κ , κ ) 1 1 T ( κ , Γ κ ) for every κ J .
Consider the MFN-space G , the MFB-space P and the MFB-algebras ν and Θ and also let λ C s.t. | λ | < 1 .

2. Tri-Additive λ -Functional Inequality (1)

Using Theorem 1, we study the multi stability of the functional Equation (1) in MFB-algebras.
Lemma 1.
Let W be a linear space and χ : W 3 W be a function satisfying (1), for any λ i W , i = 1 , , 6 . Let χ ( 0 , λ 3 , λ 5 ) = χ ( λ 1 , 0 , λ 5 ) = χ ( λ 1 , λ 3 , 0 ) = χ ( λ 1 , 0 , 0 ) = χ ( λ 2 , 0 , λ 5 ) = χ ( λ 2 , λ 3 , 0 ) = 0 , for any λ i W , i = 1 , 2 , 3 , 5 . Then, χ : W W is tri-additive.
Proof. 
Putting λ 1 = λ 2 and λ 4 = λ 6 = 0 in (1), we have
χ ( 2 λ 1 , λ 3 , λ 5 ) = 2 χ ( λ 1 , λ 3 , λ 5 ) , λ 1 , λ 3 , λ 5 W .
Thus,
N ( χ ( λ 1 + λ 2 , λ 3 λ 4 , λ 5 λ 6 ) + χ ( λ 1 λ 2 , λ 3 + λ 4 , λ 5 λ 6 ) 2 χ ( λ 1 , λ 3 , λ 5 ) + 2 χ ( λ 1 , λ 4 , λ 6 ) 2 χ ( λ 2 , λ 3 , λ 6 ) + 2 χ ( λ 2 , λ 4 , λ 5 ) , T ) N ( λ [ χ ( λ 1 + λ 2 , λ 3 λ 4 , λ 5 + λ 6 ) + χ ( λ 1 λ 2 , λ 3 + λ 4 , λ 5 λ 6 ) 2 χ ( λ 1 , λ 3 , λ 5 ) + 2 χ ( λ 1 , λ 4 , λ 6 ) 2 χ ( ϖ , λ 2 , λ 3 , λ 6 ) + 2 χ ( λ 2 , λ 4 , λ 5 ) ] , T ) ,
and so
χ ( λ 1 + λ 2 , λ 3 λ 4 , λ 5 λ 6 ) + χ ( λ 1 λ 2 , λ 3 + λ 4 , λ 5 λ 6 ) 2 χ ( λ 1 , λ 3 , λ 5 ) + 2 χ ( λ 1 , λ 4 , λ 6 ) 2 χ ( λ 2 , λ 3 , λ 6 ) + 2 χ ( λ 2 , λ 4 , λ 5 ) = 0 ,
for all λ i W , i = 1 , , 6 . Now, putting λ 4 = λ 6 = 0 in (3), we have
χ ( λ 1 + λ 2 , λ 3 , λ 5 ) + χ ( λ 1 λ 2 , λ 3 , λ 5 ) = 2 χ ( λ 1 , λ 3 , λ 5 ) ,
and so
χ ( λ , λ 3 , λ 5 ) + χ ( , λ 3 , λ 5 ) = 2 χ ( λ + 2 , λ 3 , λ 5 ) = χ ( λ + , λ 3 , λ 5 ) ,
for all λ = λ 1 + λ 2 , = λ 1 λ 2 , λ 3 , λ 4 , λ 5 , λ 6 W . Since | λ | < 1 ,   χ : W 3 W is additive in the second variable. In a similar way, we have that χ : W 3 W is additive both in the second and in the third variable. Thus, χ : W 3 W is tri-additive.    □
Theorem 2.
Suppose i = 1 , , n and n N . Let ( G , N , GTN M , GTN M ) be an MFB-algebra, and E i : G 6 × ( 0 , + ) Φ be a fuzzy control function s.t. there exists a ϑ i < 1 with
E i λ 1 2 , λ 2 2 , λ 3 2 , λ 4 2 , λ 5 2 , λ 6 2 , T E i λ 1 , λ 2 , λ 3 , λ 4 , λ 5 , λ 6 , 2 ϑ i T
and
lim j E i λ 1 2 j , λ 2 2 j , λ 3 2 j , λ 4 2 j , λ 5 2 j , λ 6 2 j , T 2 j = 1 ,
for all λ i G , i = 1 , , 6 and T > 0 . Let the fuzzy operator χ : G 3 P satisfying χ ( 0 , λ 3 , λ 5 ) = χ ( λ 1 , 0 , λ 5 ) = χ ( λ 1 , λ 3 , 0 ) = χ ( λ 1 , 0 , 0 ) = χ ( λ 2 , 0 , λ 5 ) = χ ( λ 2 , λ 3 , 0 ) = 0 and
N ( χ ( λ 1 + λ 2 , λ 3 λ 4 , λ 5 λ 6 ) + χ ( λ 1 λ 2 , λ 3 + λ 4 , λ 5 λ 6 ) 2 χ ( λ 1 , λ 3 , λ 5 ) + 2 χ ( λ 1 , λ 4 , λ 6 ) 2 χ ( λ 2 , λ 3 , λ 6 ) + 2 χ ( λ 2 , λ 4 , λ 5 ) , T ) N ( J [ 2 χ ( λ 1 + λ 2 2 , λ 3 λ 4 , λ 5 + λ 6 ) + 2 χ ( λ 1 λ 2 2 , λ 3 + λ 4 , λ 5 λ 6 ) 2 χ ( λ 1 , λ 3 , λ 5 ) + 2 χ ( λ 1 , λ 4 , λ 6 ) 2 χ ( λ 2 , λ 3 , λ 6 ) + 2 χ ( λ 2 , λ 4 , λ 5 ) ] , T ) GTN Diagonal E 1 λ 1 , λ 2 , λ 3 , λ 4 , λ 5 , λ 6 , T , , E n λ 1 , λ 2 , λ 3 , λ 4 , λ 5 , λ 6 , T .
Then, there exists a unique tri-additive mapping χ : G 3 P satisfying
N χ ( λ 1 , λ 3 , λ 5 ) χ ( λ 1 , λ 3 , λ 5 ) , T Diagonal [ E 1 λ 1 , 0 , λ 3 2 , λ 3 2 , λ 5 , 0 , ( 1 4 ϑ 1 ) T TN E 1 λ 1 2 , λ 1 2 , λ 3 2 , 0 , λ 5 , 0 , ( 1 4 ϑ 1 ) T 2 TN E 1 λ 1 2 , 0 , λ 3 2 , 0 , λ 5 2 , λ 5 2 , ( 1 4 ϑ 1 ) T 4 , , E n λ 1 , 0 , λ 3 2 , λ 3 2 , λ 5 , 0 , ( 1 4 ϑ n ) T TN E n λ 1 2 , λ 1 2 , λ 3 2 , 0 , λ 5 , 0 , ( 1 4 ϑ n ) T 2 TN E n λ 1 2 , 0 , λ 3 2 , 0 , λ 5 2 , λ 5 2 , ( 1 4 ϑ n ) T 4 ] ,
for all λ 1 , λ 3 , λ 5 G .
Proof. 
Letting λ 4 = λ 6 = 0 and λ 2 = λ 1 in (8), we get
N χ ( 2 λ 1 , λ 3 , λ 5 ) 2 χ ( λ 1 , λ 3 , λ 5 ) , T Diagonal E 1 λ 1 , λ 1 , λ 3 , 0 , λ 5 , 0 , T , , E n λ 1 , λ 1 , λ 3 , 0 , λ 5 , 0 , T ,
and so
N χ ( 2 λ 1 , λ 3 , 2 λ 5 ) 2 χ ( λ 1 , λ 3 , 2 λ 5 ) , T Diagonal E 1 λ 1 , λ 1 , λ 3 , 0 , 2 λ 5 , 0 , T , , E n λ 1 , λ 1 , λ 3 , 0 , 2 λ 5 , 0 , T ,
for all λ 1 , λ 3 , λ 5 G .
Letting λ 2 = λ 4 = 0 and λ 6 = λ 5 in (8), we get
N χ ( λ 1 , λ 3 , 2 λ 5 ) 2 χ ( λ 1 , λ 3 , λ 5 ) , T Diagonal E 1 λ 1 , 0 , λ 3 , 0 , λ 5 , λ 5 , T , , E n λ 1 , 0 , λ 3 , 0 , λ 5 , λ 5 , T ,
and so
N χ ( 2 λ 1 , λ 3 , 2 λ 5 ) 4 χ ( λ 1 , λ 3 , λ 5 ) , T Diagonal [ E 1 λ 1 , λ 1 , λ 3 , 0 , 2 λ 5 , 0 , T TN E 1 λ 1 , 0 , λ 3 , 0 , λ 5 , λ 5 , T 2 , , E n λ 1 , λ 1 , λ 3 , 0 , 2 λ 5 , 0 , T TN E n λ 1 , 0 , λ 3 , 0 , λ 5 , λ 5 , T 2 ]
for all λ 1 , λ 3 , λ 5 G .
Letting λ 2 = λ 6 = 0 and λ 4 = λ 3 in (8), we get
N χ ( λ 1 , 2 λ 3 , λ 5 ) 2 χ ( λ 1 , λ 3 , λ 5 ) , T Diagonal E 1 λ 1 , 0 , λ 3 , λ 3 , λ 5 , 0 , T , , E n λ 1 , 0 , λ 3 , λ 3 , λ 5 , 0 , T ,
and so
N χ ( 2 λ 1 , 2 λ 3 , 2 λ 5 ) 2 χ ( 2 λ 1 , λ 3 , 2 λ 5 ) , T Diagonal E 1 2 λ 1 , 0 , λ 3 , λ 3 , 2 λ 5 , 0 , T , , E n 2 λ 1 , 0 , λ 3 , λ 3 , 2 λ 5 , 0 , T ,
for all λ 1 , λ 3 , λ 5 G .
According to (10) and (11)
N χ ( 2 λ 1 , 2 λ 3 , 2 λ 5 ) 8 χ ( λ 1 , λ 3 , λ 5 ) , T Diagonal [ E 1 2 λ 1 , 0 , λ 3 , λ 3 , 2 λ 5 , 0 , T TN E 1 λ 1 , λ 1 , λ 3 , 0 , 2 λ 5 , 0 , T 2 TN E 1 λ 1 , 0 , λ 3 , 0 , λ 5 , λ 5 , T 4 , , E n 2 λ 1 , 0 , λ 3 , λ 3 , 2 λ 5 , 0 , T TN E n λ 1 , λ 1 , λ 3 , 0 , 2 λ 5 , 0 , T 2 TN E n λ 1 , 0 , λ 3 , 0 , λ 5 , λ 5 , T 4 ] ,
and so
N χ ( λ 1 , λ 3 , λ 5 ) 8 χ λ 1 2 , λ 3 2 , λ 5 2 , T Diagonal [ E 1 λ 1 , 0 , λ 3 2 , λ 3 2 , λ 5 , 0 , T TN E 1 λ 1 2 , λ 1 2 , λ 3 2 , 0 , λ 5 , 0 , T 2 TN E 1 λ 1 2 , 0 , λ 3 2 , 0 , λ 5 2 , λ 5 2 , T 4 , , E n λ 1 , 0 , λ 3 2 , λ 3 2 , λ 5 , 0 , T TN E n λ 1 2 , λ 1 2 , λ 3 2 , 0 , λ 5 , 0 , T 2 TN E n λ 1 2 , 0 , λ 3 2 , 0 , λ 5 2 , λ 5 2 , T 4 ] ,
for all λ 1 , λ 3 , λ 5 G .
Consider the set
η : = { Ξ : G 3 P , Ξ ( λ 1 , 0 , λ 5 ) = Ξ ( 0 , λ 3 , λ 5 ) = Ξ ( λ 1 , λ 3 , 0 ) = 0 }
and the following vector valued generalized metric : η × η [ 0 , + ] 3 n given by
( Ξ , ς ) = 1 ( Ξ , ς ) , 2 ( Ξ , ς ) , 3 ( Ξ , ς ) = inf { ( μ 1 , μ 2 , μ 3 ) n R + 3 n : N Ξ ( λ 1 , λ 3 , λ 5 ) ς ( λ 1 , λ 3 , λ 5 ) , T E 1 λ 1 , 0 , λ 3 2 , λ 3 2 , λ 5 , 0 , T μ 1 TN E 1 λ 1 2 , λ 1 2 , λ 3 2 , 0 , λ 5 , 0 , T μ 2 TN E 1 λ 1 2 , 0 , λ 3 2 , 0 , λ 5 2 , λ 5 2 , T μ 3 , , E n λ 1 , 0 , λ 3 2 , λ 3 2 , λ 5 , 0 , T μ 1 TN E n λ 1 2 , λ 1 2 , λ 3 2 , 0 , λ 5 , 0 , T μ 2 TN E n λ 1 2 , 0 , λ 3 2 , 0 , λ 5 2 , λ 5 2 , T μ 3 , λ 1 , λ 3 , λ 5 G , } ,
where, as usual, inf = ( inf , inf , inf ) = ( + , + , + ) . We prove that ( η , ) is a complete generalized metric space. We first prove the inequality ( Ξ , ς ) ( Ξ , ) + ( , ς ) , as follows:
( Ξ , ς ) = 1 ( Ξ , ς ) , 2 ( Ξ , ς ) , 3 ( Ξ , ς ) = inf { ( μ 1 , μ 2 , μ 3 ) n R + 3 n : N Ξ ( λ 1 , λ 3 , λ 5 ) ς ( λ 1 , λ 3 , λ 5 ) , T Diagonal [ E 1 λ 1 , 0 , λ 3 2 , λ 3 2 , λ 5 , 0 , T μ 1 TN E 1 λ 1 2 , λ 1 2 , λ 3 2 , 0 , λ 5 , 0 , T μ 2 TN E 1 λ 1 2 , 0 , λ 3 2 , 0 , λ 5 2 , λ 5 2 , T μ 3 , , E n λ 1 , 0 , λ 3 2 , λ 3 2 , λ 5 , 0 , T μ 1 TN E n λ 1 2 , λ 1 2 , λ 3 2 , 0 , λ 5 , 0 , T μ 2 TN E n λ 1 2 , 0 , λ 3 2 , 0 , λ 5 2 , λ 5 2 , T μ 3 ] , λ 1 , λ 3 , λ 5 G } inf { ( μ 1 , μ 2 , μ 3 ) n R + 3 n : N Ξ ( λ 1 , λ 3 , λ 5 ) ( λ 1 , λ 3 , λ 5 ) , T TN N ( λ 1 , λ 3 , λ 5 ) ς ( λ 1 , λ 3 , λ 5 ) , T Diagonal [ E 1 λ 1 , 0 , λ 3 2 , λ 3 2 , λ 5 , 0 , T μ 1 TN E 1 λ 1 2 , λ 1 2 , λ 3 2 , 0 , λ 5 , 0 , T μ 2 TN E 1 λ 1 2 , 0 , λ 3 2 , 0 , λ 5 2 , λ 5 2 , T μ 3 , , E n λ 1 , 0 , λ 3 2 , λ 3 2 , λ 5 , 0 , T μ 1 TN E n λ 1 2 , λ 1 2 , λ 3 2 , 0 , λ 5 , 0 , T μ 2 TN E n λ 1 2 , 0 , λ 3 2 , 0 , λ 5 2 , λ 5 2 , T μ 3 ] , λ 1 , λ 3 , λ 5 G } inf { ( μ 1 , μ 2 , μ 3 ) n R + 3 n : N Ξ ( λ 1 , λ 3 , λ 5 ) ( λ 1 , λ 3 , λ 5 ) , T Diagonal [ E 1 λ 1 , 0 , λ 3 2 , λ 3 2 , λ 5 , 0 , T μ 1 TN E 1 λ 1 2 , λ 1 2 , λ 3 2 , 0 , λ 5 , 0 , T μ 2 TN E 1 λ 1 2 , 0 , λ 3 2 , 0 , λ 5 2 , λ 5 2 , T μ 3 , , E n λ 1 , 0 , λ 3 2 , λ 3 2 , λ 5 , 0 , T μ 1 TN E n λ 1 2 , λ 1 2 , λ 3 2 , 0 , λ 5 , 0 , T μ 2 TN E n λ 1 2 , 0 , λ 3 2 , 0 , λ 5 2 , λ 5 2 , T μ 3 , λ 1 , λ 3 , λ 5 G } , + inf { ( μ 1 , μ 2 , μ 3 ) n R + 3 n : N ( λ 1 , λ 3 , λ 5 ) ς ( λ 1 , λ 3 , λ 5 ) , T Diagonal [ E 1 λ 1 , 0 , λ 3 2 , λ 3 2 , λ 5 , 0 , T μ 1 TN E 1 λ 1 2 , λ 1 2 , λ 3 2 , 0 , λ 5 , 0 , T μ 2 TN E 1 λ 1 2 , 0 , λ 3 2 , 0 , λ 5 2 , λ 5 2 , T μ 3 , , E n λ 1 , 0 , λ 3 2 , λ 3 2 , λ 5 , 0 , T μ 1 TN E n λ 1 2 , λ 1 2 , λ 3 2 , 0 , λ 5 , 0 , T μ 2 TN E n λ 1 2 , 0 , λ 3 2 , 0 , λ 5 2 , λ 5 2 , T μ 3 , λ 1 , λ 3 , λ 5 G } = ( Ξ , ) + ( , ς ) .
We now prove ( η , ) is complete. Let ω w be a Cauchy sequence in ( η , ) . Thus, for every ϵ 1 , ϵ 2 , ϵ 3 > 0 , there exists an ϵ 1 , ϵ 2 , ϵ 3 N such that ( ω m , ω w ) ( ϵ 1 , ϵ 2 , ϵ 3 ) n for every m , w ϵ 1 , ϵ 2 , ϵ 3 . According to (14), we have
N ω m ( λ 1 , λ 3 , λ 5 ) ω w ( λ 1 , λ 3 , λ 5 ) , T Diagonal [ E 1 λ 1 , 0 , λ 3 2 , λ 3 2 , λ 5 , 0 , T ϵ 1 TN E 1 λ 1 2 , λ 1 2 , λ 3 2 , 0 , λ 5 , 0 , T ϵ 2 TN E 1 λ 1 2 , 0 , λ 3 2 , 0 , λ 5 2 , λ 5 2 , T ϵ 3 , , E n λ 1 , 0 , λ 3 2 , λ 3 2 , λ 5 , 0 , T ϵ 1 TN E n λ 1 2 , λ 1 2 , λ 3 2 , 0 , λ 5 , 0 , T ϵ 2 TN E n λ 1 2 , 0 , λ 3 2 , 0 , λ 5 2 , λ 5 2 , T ϵ 3 ] ,
for all λ 1 , λ 3 , λ 5 G . If λ 1 , λ 3 , λ 5 are fixed, (16) implies that { ω w ( λ 1 , λ 3 , λ 5 ) } is a Cauchy sequence in G . Since G is complete, { ω w ( λ 1 , λ 3 , λ 5 ) } converges for any λ 1 , λ 3 , λ 5 G . Thus, we can obtain a function ω by
ω ( λ 1 , λ 2 , λ 3 ) : = lim w ω w ( λ 1 , λ 3 , λ 5 ) , ( λ 1 , λ 3 , λ 5 G ) .
It is straightforward to show ω η . If we let m we conclude from (16) that
N ω ( λ 1 , λ 3 , λ 5 ) ω w ( λ 1 , λ 3 , λ 5 ) , T Diagonal [ E 1 λ 1 , 0 , λ 3 2 , λ 3 2 , λ 5 , 0 , T ϵ 1 TN E 1 λ 1 2 , λ 1 2 , λ 3 2 , 0 , λ 5 , 0 , T ϵ 2 TN E 1 λ 1 2 , 0 , λ 3 2 , 0 , λ 5 2 , λ 5 2 , T ϵ 3 , , E n λ 1 , 0 , λ 3 2 , λ 3 2 , λ 5 , 0 , T ϵ 1 TN E n λ 1 2 , λ 1 2 , λ 3 2 , 0 , λ 5 , 0 , T ϵ 2 TN E n λ 1 2 , 0 , λ 3 2 , 0 , λ 5 2 , λ 5 2 , T ϵ 3 ] .
Considering (14), we get
( ω , ω w ) ( ϵ 1 , ϵ 2 , ϵ 3 ) n .
Therefore, the Cauchy sequence { ω w } is convergent to ω in ( η , ) . Hence, ( η , ) is complete.
We now consider the linear mapping Γ : η η as follows:
Γ ( Ξ ( λ 1 , λ 3 , λ 5 ) ) : = 8 Ξ λ 1 2 , λ 3 2 , λ 5 2
for all λ 1 , λ 3 , λ 5 G .
Let Ξ , ς η be given such that ( Ξ , ς ) = ( ε 1 , ε 2 , ε 3 ) n . Then, we get
N Ξ ( λ 1 , λ 3 , λ 5 ) ς ( λ 1 , λ 3 , λ 5 ) , T Diagonal [ E 1 λ 1 , 0 , λ 3 2 , λ 3 2 , λ 5 , 0 , T ϵ 1 TN E 1 λ 1 2 , λ 1 2 , λ 3 2 , 0 , λ 5 , 0 , T ϵ 2 TN E 1 λ 1 2 , 0 , λ 3 2 , 0 , λ 5 2 , λ 5 2 , T ϵ 3 , , E n λ 1 , 0 , λ 3 2 , λ 3 2 , λ 5 , 0 , T ϵ 1 TN E n λ 1 2 , λ 1 2 , λ 3 2 , 0 , λ 5 , 0 , T ϵ 2 TN E n λ 1 2 , 0 , λ 3 2 , 0 , λ 5 2 , λ 5 2 , T ϵ 3 ] ,
for all λ 1 , λ 3 , λ 5 G .
Thus, we have that
N Γ ( Ξ ( λ 1 , λ 3 , λ 5 ) ) Γ ( ς ( λ 1 , λ 3 , λ 5 ) ) , T = N 8 Ξ ( λ 1 2 , λ 3 2 , λ 5 2 ) 8 ς ( λ 1 2 , λ 3 2 , λ 5 2 ) , T Diagonal [ E 1 λ 1 2 , 0 , λ 3 4 , λ 3 4 , λ 5 2 , 0 , 1 8 ε 1 T TN E 1 λ 1 4 , λ 1 4 , λ 3 4 , 0 , λ 5 2 , 0 , 1 8 ε 2 T TN E 1 λ 1 4 , 0 , λ 3 4 , 0 , λ 5 4 , λ 5 4 , 1 8 ε 3 T , , E n λ 1 2 , 0 , λ 3 4 , λ 3 4 , λ 5 2 , 0 , 1 8 ε 1 T TN E n λ 1 4 , λ 1 4 , λ 3 4 , 0 , λ 5 2 , 0 , 1 8 ε 2 T TN E n λ 1 4 , 0 , λ 3 4 , 0 , λ 5 4 , λ 5 4 , 1 8 ε 3 T ] Diagonal [ E 1 λ 1 , 0 , λ 3 2 , λ 3 2 , λ 5 , 0 , 1 4 ϑ 1 ε 1 T TN E 1 λ 1 2 , λ 1 2 , λ 3 2 , 0 , λ 5 , 0 , 1 4 ϑ 1 ε 2 T TN E 1 λ 1 2 , 0 , λ 3 2 , 0 , λ 5 2 , λ 5 2 , 1 4 ϑ 1 ε 3 T , , E n λ 1 , 0 , λ 3 2 , λ 3 2 , λ 5 , 0 , 1 4 ϑ n ε 1 T TN E n λ 1 2 , λ 1 2 , λ 3 2 , 0 , λ 5 , 0 , 1 4 ϑ n ε 2 T TN E n λ 1 2 , 0 , λ 3 2 , 0 , λ 5 2 , λ 5 2 , 1 4 ϑ n ε 3 T ] ,
for all λ 1 , λ 3 , λ 5 G . So we have that ( Γ Ξ , Γ ς ) 4 ϑ 1 ( ε 1 , ε 2 , ε 3 ) , , 4 ϑ n ( ε 1 , ε 2 , ε 3 ) . This means that
( Γ Ξ , Γ ς ) ( 4 ϑ 1 , , 4 ϑ n ) ( Ξ , ς ) ,
for all Ξ , ς η .
It follows from (13) that
N χ ( λ 1 , λ 3 , λ 5 ) 8 χ λ 1 2 , λ 3 2 , λ 5 2 , T Diagonal [ E 1 λ 1 , 0 , λ 3 2 , λ 3 2 , λ 5 , 0 , T TN E 1 λ 1 2 , λ 1 2 , λ 3 2 , 0 , λ 5 , 0 , 2 T TN E 1 λ 1 2 , 0 , λ 3 2 , 0 , λ 5 2 , λ 5 2 , 4 T , , E n λ 1 , 0 , λ 3 2 , λ 3 2 , λ 5 , 0 , T TN E n λ 1 2 , λ 1 2 , λ 3 2 , 0 , λ 5 , 0 , 2 T TN E n λ 1 2 , 0 , λ 3 2 , 0 , λ 5 2 , λ 5 2 , 4 T ] ,
for all λ 1 , λ 3 , λ 5 G and χ η . So ( χ , Γ χ ) ( 1 , 2 , 4 ) n .
Based on Theorem 1, we can obtain a mapping χ : G 3 P s.t.
(1)
χ is a fixed point of Γ , i.e.,
Γ ( χ ( λ 1 , λ 3 , λ 5 ) ) = χ ( λ 1 , λ 3 , λ 5 ) : = 8 χ λ 1 2 , λ 3 2 , λ 5 2
for all λ 1 , λ 3 , λ 5 G . The mapping χ is a unique fixed point of Γ . We conclude that χ is a unique mapping satisfying (21) s.t. there exists ( μ 1 , μ 2 , μ 3 ) n ( 0 , ) 3 n satisfying
N χ ( λ 1 , λ 3 , λ 5 ) χ ( λ 1 , λ 3 , λ 5 ) , T Diagonal [ E 1 λ 1 , 0 , λ 3 2 , λ 3 2 , λ 5 , 0 , T μ 1 TN E 1 λ 1 2 , λ 1 2 , λ 3 2 , 0 , λ 5 , 0 , T μ 2 TN E 1 λ 1 2 , 0 , λ 3 2 , 0 , λ 5 2 , λ 5 2 , T μ 3 , , E n λ 1 , 0 , λ 3 2 , λ 3 2 , λ 5 , 0 , T μ 1 TN E n λ 1 2 , λ 1 2 , λ 3 2 , 0 , λ 5 , 0 , T μ 2 TN E n λ 1 2 , 0 , λ 3 2 , 0 , λ 5 2 , λ 5 2 , T μ 3 ] ,
for all λ 1 , λ 3 , λ 5 G ;
(2)
( Γ k L , L ) ( 0 , 0 , 0 ) n as k . This implies the following equality
χ ( λ 1 , λ 3 , λ 5 ) = lim k 8 k χ λ 1 2 k , λ 3 2 k , λ 5 2 k
for all λ 1 , λ 3 , λ 5 G ;
(3)
( χ , χ ) ( 1 1 4 ϑ 1 , , 1 1 4 ϑ n ) ( χ , Γ χ ) , which implies that
N χ ( λ 1 , λ 3 , λ 5 ) χ ( λ 1 , λ 3 , λ 5 ) , T Diagonal [ E 1 λ 1 , 0 , λ 3 2 , λ 3 2 , λ 5 , 0 , ( 1 4 ϑ 1 ) T TN E 1 λ 1 2 , λ 1 2 , λ 3 2 , 0 , λ 5 , 0 , 1 4 ϑ 1 2 T TN E 1 λ 1 2 , 0 , λ 3 2 , 0 , λ 5 2 , λ 5 2 , 1 4 ϑ 1 4 T , , E n λ 1 , 0 , λ 3 2 , λ 3 2 , λ 5 , 0 , ( 1 4 ϑ n ) T TN E n λ 1 2 , λ 1 2 , λ 3 2 , 0 , λ 5 , 0 , 1 4 ϑ n 2 T TN E n λ 1 2 , 0 , λ 3 2 , 0 , λ 5 2 , λ 5 2 , 1 4 ϑ n 4 T ] ,
for all λ 1 , λ 3 , λ 5 G .
Now, let χ : G 3 P be another additive mapping satisfying (9). Thus, we get
N χ ( λ 1 , λ 3 , λ 5 ) χ ( λ 1 , λ 3 , λ 5 , T = N 8 q χ λ 1 2 q , λ 3 2 q , λ 5 2 q 8 q χ λ 1 2 q , λ 3 2 q , λ 5 2 q , T N 8 q χ λ 1 2 q , λ 3 2 q , λ 5 2 q 8 q χ λ 1 2 q , λ 3 2 q , λ 5 2 q , T GTN N 8 q χ λ 1 2 q , λ 3 2 q , λ 5 2 q 8 q χ λ 1 2 q , λ 3 2 q , λ 5 2 q , T Diagonal [ E 1 λ 1 2 q , 0 , λ 3 2 q + 1 , λ 3 2 q + 1 , λ 5 2 q , 0 , 1 4 ϑ 2 . 8 q T TN E 1 λ 1 2 q + 1 , λ 1 2 q + 1 , λ 3 2 q + 1 , 0 , λ 5 2 q , 0 , 1 4 ϑ 4 . 8 q T TN E 1 λ 1 2 q + 1 , 0 , λ 3 2 q + 1 , 0 , λ 5 2 q + 1 , λ 5 2 q + 1 , 1 4 ϑ 8 . 8 q T , , E n λ 1 2 q , 0 , λ 3 2 q + 1 , λ 3 2 q + 1 , λ 5 2 q , 0 , 1 4 ϑ 2 . 8 q T TN E n λ 1 2 q + 1 , λ 1 2 q + 1 , λ 3 2 q + 1 , 0 , λ 5 2 q , 0 , 1 4 ϑ 4 . 8 q T TN E n λ 1 2 q + 1 , 0 , λ 3 2 q + 1 , 0 , λ 5 2 q + 1 , λ 5 2 q + 1 , 1 4 ϑ 8 . 8 q T ] ,
which tends to 1 as q , for all λ 1 , λ 3 , λ 5 G . Hence, we can infer χ ( λ 1 , λ 3 , λ 5 ) = χ ( λ 1 , λ 3 , λ 5 ) for all λ 1 , λ 3 , λ 5 G . This shows the uniqueness of χ .
Making use of (8), we get
N ( χ ( λ 1 + λ 2 , λ 3 λ 4 , λ 5 + λ 6 ) + χ ( λ 1 λ 2 , λ 3 + λ 4 , λ 5 λ 6 ) , 2 χ ( λ 1 , λ 3 , λ 5 ) + 2 χ ( λ 1 , λ 4 , λ 6 ) 2 χ ( λ 2 , λ 3 , λ 6 ) + 2 χ ( λ 2 , λ 4 , λ 5 ) , T ) = lim n N ( 8 n [ χ ( λ 1 + λ 2 2 n , λ 3 λ 4 2 n , λ 5 + λ 6 2 n ) + χ ( λ 1 λ 2 2 n , λ 3 + λ 4 2 n , λ 5 λ 6 2 n ) 2 χ ( λ 1 2 n , λ 3 2 n , λ 5 2 n ) + 2 χ ( λ 1 2 n , λ 4 2 n , λ 6 2 n ) 2 χ ( λ 2 2 n , λ 3 2 n , λ 6 2 n ) + 2 χ ( λ 2 2 n , λ 4 2 n , λ 5 2 n ) ] , T ) lim n N ( 8 n λ [ 2 χ ( λ 1 + λ 2 2 n + 1 , λ 3 λ 4 2 n , λ 5 + λ 6 2 n ) + 2 χ ( λ 1 λ 2 2 n + 1 , λ 3 + λ 4 2 n , λ 5 λ 6 2 n ) 2 χ ( λ 1 2 n , λ 3 2 n , λ 5 2 n ) + 2 χ ( λ 1 2 n , λ 4 2 n , λ 6 2 n ) 2 χ ( λ 2 2 n , λ 3 2 n , λ 6 2 n ) + 2 χ ( λ 2 2 n , λ 4 2 n , λ 5 2 n ) ] , T ) GTN Diagonal [ lim n E 1 λ 1 2 n , λ 2 2 n , λ 3 2 n , λ 4 2 n , λ 5 2 n , λ 6 2 n , T 8 n , , lim n E n λ 1 2 n , λ 2 2 n , λ 3 2 n , λ 4 2 n , λ 5 2 n , λ 6 2 n , T 8 n ] N ( λ [ 2 χ ( λ 1 + λ 2 2 , λ 3 λ 4 , λ 5 + λ 6 ) + 2 χ ( λ 1 λ 2 2 , λ 3 + λ 4 , λ 5 λ 6 ) 2 χ ( λ 1 , λ 3 , λ 5 ) + 2 χ ( λ 1 , λ 4 , λ 6 ) 2 χ ( λ 2 , λ 3 , λ 6 ) + 2 χ ( λ 2 , λ 4 , λ 5 ) ] , T )
for all λ 1 , λ 2 , λ 3 , λ 4 , λ 5 , λ 6 G . So, we have
N ( χ ( λ 1 + λ 2 , λ 3 λ 4 , λ 5 + λ 6 ) + χ ( λ 1 λ 2 , λ 3 + λ 4 , λ 5 λ 6 ) 2 χ ( λ 1 , λ 3 , λ 5 ) + 2 χ ( λ 1 , λ 4 , λ 6 ) 2 χ ( λ 2 , λ 3 , λ 6 ) + 2 χ ( λ 2 , λ 4 , λ 5 ) , T ) N ( λ [ 2 χ ( λ 1 + λ 2 2 , λ 3 λ 4 , λ 5 + λ 6 ) + 2 χ ( λ 1 λ 2 2 , λ 3 + λ 4 , λ 5 λ 6 ) 2 χ ( λ 1 , λ 3 , λ 5 ) + 2 χ ( λ 1 , λ 4 , λ 6 ) 2 χ ( λ 2 , λ 3 , λ 6 ) + 2 χ ( λ 2 , λ 4 , λ 5 ) ] , T )
for all λ 1 , λ 2 , λ 3 , λ 4 , λ 5 , λ 6 G . Using Lemma 1, we infer the mapping χ : G 3 P is tri-additive.    □
Theorem 3.
Suppose i = 1 , , n and n N . Let E i : G 6 × ( 0 , + ) Φ be a function such that
E i 2 λ 1 , 2 λ 2 , 2 λ 3 , 2 λ 4 , 2 λ 5 , 2 λ 6 , T E i λ 1 , λ 2 , λ 3 , λ 4 , λ 5 , λ 6 , T 2 ϑ i ,
for all λ 1 , λ 2 , λ 3 , λ 4 , λ 5 , λ 6 G and 0 < ϑ i < 1 . Let χ : G 3 P be a mapping satisfying (8) and χ ( λ 1 , 0 , λ 5 ) = χ ( 0 , λ 3 , λ 5 ) = χ ( λ 1 , λ 3 , 0 ) = 0 for all λ 1 , λ 2 , λ 3 , λ 4 , λ 5 , λ 6 G . Then, we can find a unique tri-additive mapping χ : G 3 P satisfying
N χ ( λ 1 , λ 3 , λ 5 ) χ ( λ 1 , λ 3 , λ 5 ) , T Diagonal [ E 1 λ 1 , 0 , λ 3 , λ 3 , 2 λ 5 , 0 , ( 8 2 ϑ 1 ) T TN E 1 λ 1 , λ 1 , λ 3 , 0 , 2 λ 5 , 0 , ( 4 ϑ 1 ) T TN E 1 λ 1 , 0 , λ 3 , 0 , λ 5 , λ 5 , 4 ϑ 1 2 T , , E n λ 1 , 0 , λ 3 , λ 3 , 2 λ 5 , 0 , ( 8 2 ϑ n ) T TN E n λ 1 , λ 1 , λ 3 , 0 , 2 λ 5 , 0 , ( 4 ϑ n ) T TN E n λ 1 , 0 , λ 3 , 0 , λ 5 , λ 5 , 4 ϑ n 2 T ] ,
for all λ 1 , λ 3 , λ 5 G .
Proof. 
According to (12) we have
N χ ( λ 1 , λ 3 , λ 5 ) 1 8 χ ( 2 λ 1 , 2 λ 3 , 2 λ 5 ) , T Diagonal [ E 1 2 λ 1 , 0 , λ 3 , λ 3 , 2 λ 5 , 0 , 8 T TN E 1 λ 1 , λ 1 , λ 3 , 0 , 2 λ 5 , 0 , 4 T TN E 1 λ 1 , 0 , λ 3 , 0 , λ 5 , λ 5 , 2 T , , E n 2 λ 1 , 0 , λ 3 , λ 3 , 2 λ 5 , 0 , 8 T TN E n λ 1 , λ 1 , λ 3 , 0 , 2 λ 5 , 0 , 4 T TN E n λ 1 , 0 , λ 3 , 0 , λ 5 , λ 5 , 2 T ] ,
for all λ 1 , λ 3 , λ 5 G .
By using a similar method as in the proof of Theorem 2, the proof will be completed.    □

3. Permuting Tri-Derivations on MFB-Algebras

Here, we study the multi-stability of permuting triderivations on unital MFC-⋄-algebras and complex MFB-algebras related to the functional Equation (1).
Lemma 2
([47]). Let χ : G 2 P be a bi-additive mapping s.t. χ ( Λ 1 λ 1 , Λ 2 λ 3 ) = Λ 1 Λ 2 χ ( λ 1 , λ 3 ) for all λ 1 , λ 3 J and Λ 1 , Λ 2 Δ 1 : = { C : | | = 1 } . Then, χ is C bilinear.
Lemma 3.
Consider the tri-additive mapping χ : G 3 P s.t. χ ( Λ 1 λ 1 , Λ 2 λ 3 , Λ 3 λ 5 ) = Λ 1 Λ 2 Λ 3 χ ( λ 1 , λ 3 , λ 5 ) for all λ 1 , λ 3 , λ 5 1 and Λ 1 , Λ 2 , Λ 3 Δ 1 . Then, χ is C trilinear.
Proof. 
It follows from a similar method as in the proof of Theorem [47] (Lemma 2.1).    □
Theorem 4.
Suppose i = 1 , , n and n N . Let E i : ν 6 × ( 0 , + ) Φ be a function such that there exists a 0 < ϑ i < 1 with
E i λ 1 2 , λ 2 2 , λ 3 2 , λ 4 2 , λ 5 2 , λ 6 2 , T E i λ 1 , λ 2 , λ 3 , λ 4 , λ 5 , λ 6 , 2 ϑ T
and let χ : ν 3 ν be a mapping satisfying χ ( λ 1 , 0 , λ 5 ) = χ ( 0 , λ 3 , λ 5 ) = χ ( λ 1 , λ 3 , 0 ) = 0 and
N ( χ ( Λ 1 ( λ 1 + λ 2 ) , Λ 2 ( λ 3 λ 4 ) , Λ 3 ( λ 5 + λ 6 ) ) + χ ( Λ 1 ( λ 1 λ 2 ) , Λ 2 ( λ 3 + λ 4 ) , Λ 3 ( λ 5 λ 6 ) ) Λ 1 Λ 2 Λ 3 ( 2 χ ( λ 1 , λ 3 , λ 5 ) 2 χ ( λ 1 , λ 4 , λ 6 ) + 2 χ ( λ 2 , λ 3 , λ 6 ) 2 χ ( λ 2 , λ 4 , λ 5 ) ) , T ) N ( λ [ 2 χ ( λ 1 + λ 2 2 , λ 3 λ 4 , λ 5 + λ 6 ) + 2 χ ( λ 1 λ 2 2 , λ 3 + λ 4 , λ 5 λ 6 ) 2 χ ( λ 1 , λ 3 , λ 5 ) + 2 χ ( λ 1 , λ 4 , λ 6 ) 2 χ ( λ 2 , λ 3 , λ 6 ) + 2 χ ( λ 2 , λ 4 , λ 5 ) ) ] , T ) GTN Diagonal E 1 λ 1 , λ 2 , λ 3 , λ 4 , λ 5 , λ 6 , T , , E n λ 1 , λ 2 , λ 3 , λ 4 , λ 5 , λ 6 , T ,
for all Λ 1 , Λ 2 , Λ 3 Δ 1 and all λ 1 , λ 2 , λ 3 , λ 4 , λ 5 , λ 6 ν . Then, we obtain a unique C trilinear mapping ϖ : ν 3 ν satisfying
N χ ( λ 1 , λ 3 , λ 5 ) ϖ ( λ 1 , λ 3 , λ 5 ) , T Diagonal [ E 1 λ 1 , 0 , λ 3 2 , λ 3 2 , λ 5 , 0 , ( 1 4 ϑ 1 ) T TN E 1 λ 1 2 , λ 1 2 , λ 3 2 , 0 , λ 5 , 0 , ( 1 4 ϑ 1 ) 2 T TN E 1 λ 1 2 , 0 , λ 3 2 , 0 , λ 5 2 , λ 5 2 , ( 1 4 ϑ 1 ) 4 T , , E n λ 1 , 0 , λ 3 2 , λ 3 2 , λ 5 , 0 , ( 1 4 ϑ n ) T TN E n λ 1 2 , λ 1 2 , λ 3 2 , 0 , λ 5 , 0 , ( 1 4 ϑ n ) 2 T TN E n λ 1 2 , 0 , λ 3 2 , 0 , λ 5 2 , λ 5 2 , ( 1 4 ϑ n ) 4 T ] ,
for any λ 1 , λ 3 , λ 5 ν .
Besides, if the mapping χ : ν 3 ν satisfies χ ( λ 1 , λ 3 , λ 5 ) = 2 χ ( λ 1 , λ 3 , λ 5 ) and
N χ ( λ 1 λ 2 , λ 3 , λ 5 ) χ ( λ 1 , λ 3 , λ 5 ) λ 2 λ 1 χ ( λ 2 , λ 3 , λ 5 ) , T Diagonal E 1 λ 1 , λ 2 , λ 3 , λ 3 , λ 5 , λ 5 , T , , E n λ 1 , λ 2 , λ 3 , λ 3 , λ 5 , λ 5 , T ,
N χ ( β ( 1 ) , β ( 2 ) , β ( 3 ) ) χ ( 1 , 2 , 3 ) , T E 1 , 1 , 2 , 2 , 3 , 3 , T
for all permutations ( β ( 1 ) , β ( 2 ) , β ( 3 ) ) of ( 1 , 2 , 3 ) , and for all λ 1 , λ 2 , λ 3 , 1 , 2 , 3 , λ 5 ν , then, the C trilinear mapping ϖ : ν 3 ν is a permuting tri-derivation.
Proof. 
Suppose Λ 1 = Λ 2 = Λ 3 = 1 in (24). Theorem 2 and [48] (Theorem 3.3) establish the theorem.    □
Theorem 5.
Suppose i = 1 , , n and n N . Let E i : ν 6 × ( 0 , + ) Φ be a function such that there exists an 0 < ϑ i < 1 with
E i 2 λ 1 , 2 λ 2 , 2 λ 3 , 2 λ 4 , 2 λ 5 , 2 λ 6 , T E λ 1 , λ 2 , λ 3 , λ 4 , λ 5 , λ 6 , T 2 ϑ i ,
for all λ 1 , λ 2 , λ 3 , λ 4 , λ 5 , λ 6 ν . Let χ : ν 3 ν be a mapping satisfying (24) and χ ( λ 1 , 0 , λ 5 ) = χ ( 0 , λ 3 , λ 5 ) = χ ( λ 1 , λ 3 , 0 ) = 0 for all λ 1 , λ 3 , λ 5 ν . Then, we obtain a unique C trilinear mapping ϖ : ν 3 ν satisfying
N χ ( λ 1 , λ 3 , λ 5 ) ϖ ( λ 1 , λ 3 , λ 5 ) , T Diagonal [ E 1 2 λ 1 , 0 , λ 3 , λ 3 , 2 λ 5 , 0 , 2 ( 4 ϑ 1 ) T E 1 λ 1 , λ 1 , λ 3 , 0 , 2 λ 5 , 0 , ( 4 ϑ 1 ) T E 1 λ 1 , 0 , λ 3 , 0 , λ 5 , λ 5 , ( 4 ϑ 1 ) 2 T , , E n 2 λ 1 , 0 , λ 3 , λ 3 , 2 λ 5 , 0 , 2 ( 4 ϑ n ) T E n λ 1 , λ 1 , λ 3 , 0 , 2 λ 5 , 0 , ( 4 ϑ n ) T E n λ 1 , 0 , λ 3 , 0 , λ 5 , λ 5 , ( 4 ϑ n ) 2 T ] ,
for all λ 1 , λ 3 , λ 5 ν .
Also, if the mapping χ : ν 3 ν , satisfies (26), (27) and χ ( 2 λ 1 , λ 3 , λ 5 ) = 2 χ ( λ 1 , λ 3 , λ 5 ) for all λ 1 , λ 3 , λ 5 ν , then the C trilinear mapping ϖ : ν 3 ν is a permuting tri-derivation.
Proof. 
This follows from an analogous technique as in the proof of Theorem 4.    □
Now, let ν and U ( ν ) be a unital MFC- algebra with unit e and unitary group, respectively.
Theorem 6.
Suppose i = 1 , , n and n N . Consider a function E i : ν 6 × ( 0 , + ) Φ which satisfies (23) and a mapping χ : ν 3 ν which satisfies (24) and χ ( λ 1 , 0 , λ 5 ) = χ ( 0 , λ 3 , λ 5 ) = χ ( λ 1 , λ 3 , 0 ) = 0 , for all λ 1 , λ 3 , λ 5 ν . Then, we obtain a unique C trilinear mapping ϖ : ν 3 ν which satisfies (25).
Also, if the mapping χ : ν 3 ν satisfies (27), χ ( 2 ϕ , λ 3 , λ 5 ) = 2 χ ( ϕ , λ 3 , λ 5 ) and
N χ ( ϕ λ 2 , λ 3 , λ 5 ) χ ( ϕ , λ 3 , λ 5 ) λ 2 ϕ χ ( λ 2 , λ 3 , λ 5 ) , T Diagonal E 1 ϕ , λ 2 , λ 3 , λ 3 , λ 5 , λ 5 , , E n ϕ , λ 2 , λ 3 , λ 3 , λ 5 , λ 5 ,
for all λ 2 , λ 3 , λ 5 ν and every ϕ U ( ν ) , then, the C trilinear mapping ϖ : ν 3 ν , is a permuting tri-derivation.
Proof. 
Theorem 4 and [48] (Theorem 3.7) establish the theorem.    □
Remark 1.
By a similar method as in the proof of the last theorem, we can conclude that if (30) in Theorem 6 is replaced by
N χ ( ϕ φ , φ 1 , φ 2 ) χ ( ϕ , φ 1 , φ 2 ) φ ϕ χ ( φ , φ 1 , φ 2 ) , T Diagonal E 1 ϕ , φ , φ 1 , φ 1 , φ 2 , φ 2 , T , , E n ϕ , φ , φ 1 , φ 1 , φ 2 , φ 2 , T ,
for all ϕ , φ , φ 1 , φ 2 U ( ν ) , then, the C trilinear mapping ϖ : ν 3 ν is a permuting triderivation.
Theorem 7.
Suppose i = 1 , , n and n N . Let E i : ν 6 × ( 0 , + ) Φ be a function satisfying (28) and χ : ν 3 ν be a mapping satisfying (24) and χ ( λ 1 , 0 , λ 5 ) = χ ( 0 , λ 3 , λ 5 ) = χ ( λ 1 , λ 3 , 0 ) = 0 , for all λ 1 , λ 3 , λ 5 ν . Then, we can find a unique C trilinear mapping ϖ : ν 3 ν satisfying (29).
Also, if the mapping χ : ν 3 ν satisfies (27) , (30) and χ ( 2 ϕ , λ 3 , λ 5 ) = 2 χ ( ϕ , λ 3 , λ 5 ) for all λ 3 , λ 5 ν and every ϕ U ( ν ) , then, the C trilinear mapping ϖ : ν 3 ν is a permuting tri-derivation.
Proof. 
An analogous technique as in the proof of Theorem 6 proves the result.    □

4. Permuting Tri-Homomorphisms in MFC-⋄-Aalgebras

Here, we prove the multi-stability results of permuting tri-homomorphisms in unital MFC-⋄-algebras related to the functional inequality (1).
Theorem 8.
Suppose i = 1 , , n and n N . Let E i : ν 6 × ( 0 , + ) Φ be a function such that there exists a 0 < ϑ i < 1 with
E i λ 1 2 , λ 2 2 , λ 3 2 , λ 4 2 , λ 5 2 , λ 6 2 , T E i λ 1 , λ 2 , λ 3 , λ 4 , λ 5 , λ 6 , 2 ϑ i T
and let χ : ν 3 Θ be a mapping satisfying (24) and χ ( λ 1 , 0 , λ 5 ) = χ ( 0 , λ 3 , λ 5 ) = χ ( λ 1 , λ 3 , 0 ) = 0 , for all λ 1 , λ 3 , λ 4 ν . Then, we obtain a unique C trilinear mapping ρ : ν 3 Θ satisfying
N χ ( λ 1 , λ 3 , λ 5 ) ρ ( λ 1 , λ 3 , λ 5 ) , T Diagonal [ E 1 λ 1 , 0 , λ 3 2 , λ 3 2 , λ 5 , 0 , ( 1 4 ϑ 1 ) T TN E 1 λ 1 2 , λ 1 2 , λ 3 2 , 0 , λ 5 , 0 , ( 1 4 ϑ 1 ) 2 T TN E 1 λ 1 2 , 0 , λ 3 2 , 0 , λ 5 2 , λ 5 2 , ( 1 4 ϑ 1 ) 4 T , , E n λ 1 , 0 , λ 3 2 , λ 3 2 , λ 5 , 0 , ( 1 4 ϑ n ) T TN E n λ 1 2 , λ 1 2 , λ 3 2 , 0 , λ 5 , 0 , ( 1 4 ϑ n ) 2 T TN E n λ 1 2 , 0 , λ 3 2 , 0 , λ 5 2 , λ 5 2 , ( 1 4 ϑ n ) 4 T ] ,
for all λ 1 , λ 3 , λ 5 ν , where E i is given in Theorem 2.
Also, if the mapping χ : ν 3 Θ satisfies (27) and
N χ ( λ 1 λ 2 , λ 3 λ 4 , λ 5 λ 6 ) χ ( λ 1 , λ 3 , λ 5 ) χ ( λ 2 , λ 4 , λ 6 ) , T Diagonal E 1 λ 1 , λ 2 , λ 3 , λ 3 , λ 5 , λ 5 , T , , E n λ 1 , λ 2 , λ 3 , λ 3 , λ 5 , λ 5 , T ,
for all λ 1 , λ 2 , λ 3 , λ 4 , λ 5 , λ 6 ν , then, the C trilinear mapping ρ : ν 3 Θ is a permuting tri-homomorphism.
Proof. 
Theorem 4 and [48] (Theorem 4.1) establish the theorem.    □
Theorem 9.
Suppose i = 1 , , n and n N . Let E i : ν 6 × ( 0 , + ) Φ be a function which satisfies (28) and χ : ν 3 Θ be a mapping which satisfies (24) and χ ( λ 1 , 0 , λ 5 ) = χ ( 0 , λ 3 , λ 5 ) = χ ( λ 1 , λ 3 , 0 ) = 0 for all λ 1 , λ 3 , λ 4 ν . Then, we can obtain a unique C trilinear mapping ρ : ν 3 Θ satisfying
N χ ( λ 1 , λ 3 , λ 5 ) ρ ( λ 1 , λ 3 , λ 5 ) , T Diagonal [ E 1 2 λ 1 , 0 , λ 3 , λ 3 , 2 λ 5 , 0 , 2 ( 4 ϑ 1 ) T TN E 1 λ 1 , λ 1 , λ 3 , 0 , 2 λ 5 , 0 , ( 4 ϑ 1 ) T TN E 1 λ 1 , 0 , λ 3 , 0 , λ 5 , λ 5 , ( 4 ϑ 1 ) 2 T , , E n 2 λ 1 , 0 , λ 3 , λ 3 , 2 λ 5 , 0 , 2 ( 4 ϑ n ) T TN E n λ 1 , λ 1 , λ 3 , 0 , 2 λ 5 , 0 , ( 4 ϑ n ) T
TN E n λ 1 , 0 , λ 3 , 0 , λ 5 , λ 5 , ( 4 ϑ n ) 2 T ] ,
for all λ 1 , λ 3 , λ 5 ν .
Also, if the mapping χ : ν 3 Θ satisfies (27) and (33) , then, the C trilinear mapping ρ : ν 3 Θ is a permuting tri-homomorphism.
Proof. 
By using a similar method as in the proof of Theorem 8, we obtain the result.    □
Now, let ν and U ( ν ) be a unital C MFB-algebra with unit e and unitary group, respectively.
Theorem 10.
Suppose i = 1 , , n and n N . Let E i : ν 6 × ( 0 , + ) Φ be a function satisfying (31) and χ : ν 3 Θ be a mapping satisfying (24) and χ ( λ 1 , 0 , λ 5 ) = χ ( 0 , λ 3 , λ 5 ) = χ ( λ 1 , λ 3 , 0 ) = 0 for all λ 1 , λ 3 , λ 5 ν . Then, we can find a unique C trilinear mapping ρ : ν 3 Θ satisfying (32).
Also, if χ : ν 3 Θ satisfies (27) and
N χ ( ϕ 1 φ 1 , ϕ 2 φ 2 , ϕ 3 φ 3 ) χ ( ϕ 1 , ϕ 2 , ϕ 3 ) χ ( φ 1 , φ 2 , φ 3 ) , T Diagonal E 1 ϕ 1 , φ 1 , ϕ 2 , φ 2 , ϕ 3 , φ 3 , T , , E n ϕ 1 , φ 1 , ϕ 2 , φ 2 , ϕ 3 , φ 3 , T ,
for all ϕ i , φ i U ( ν ) , i = 1 , 2 , 3 , then, the C trilinear mapping ρ : ν 3 Θ is a permuting tri-homomorphism.
Proof. 
Theorem 4 and [48] (Theorem 4.5) establish the theorem.    □
Theorem 11.
Suppose i = 1 , , n and n N . Let E i : ν 6 × ( 0 , + ) Φ be a function which satisfies (28) and χ : ν 3 Θ be a mapping which satisfies (24) and χ ( λ 1 , 0 , λ 5 ) = χ ( 0 , λ 3 , λ 5 ) = χ ( λ 1 , λ 3 , 0 ) = 0 , for all λ 1 , λ 3 , λ 5 ν . Then, we can find a unique C trilinear mapping ρ : ν 3 Θ satisfying (34).
Also, if the mapping χ : ν 3 Θ satisfies (27) and (36) , then, the C trilinear mapping ρ : ν 3 Θ is a permuting tri-homomorphism.
Proof. 
By using a similar method as in the proof of Theorem 10, we obtain the result.    □

5. Application

First, we present the concept of aggregation functions. Next, we propose a small list of aggregation functions on some special functions to obtain optimal stability and minimal error which enable us to present a unique optimum solution. We refer to [49,50,51,52,53,54,55,56,57] for more applications.
Let n N , and [ n ] : = { 1 , , n } . We will use bold symbols to denote n tuples. For example Diagonal [ y 1 , , y n ] n × n will often be written Y .
Definition 9
([42]). A function A ( n ) : Diagonal [ Φ , , Φ ] n × n Φ is called an aggregation function if it is nondecreasing in each variable and also fulfills the boundary conditions
inf Y Φ n A ( n ) ( Y ) = inf Φ , and sup Y Φ n A ( n ) ( Y ) = sup Φ .
The n N displays the arity of the aggregation function or the number of its variables. Note that we will denote the aggregation functions as A instead of A ( n ) .
We now give a common list of aggregation functions.
  • The arithmetic mean function AM : Diagonal [ Φ , , Φ ] n × n Φ and the geometric mean function GM : Diagonal [ Φ , , Φ ] n × n Φ are respectively given by
    AG 1 ( Y ) : = AM ( Y ) : = 1 n i = 1 n y i ,
    AG 2 ( Y ) : = GM ( Y ) : = ( i = 1 n y i ) 1 n .
  • For every k [ n ] , the projection function P k : Diagonal [ Φ , , Φ ] n × n Φ and the order statistic function OS k : Diagonal [ Φ , , Φ ] n × n Φ associated with the k t h argument, are respectively given by
    AG 3 ( Y ) : = P k ( Y ) : = y k ,
    AG 4 ( Y ) : = OS k ( Y ) : = ( y ) k ,
    where ( y ) k is the k t h lowest coordinate of y, that is,
    y ( 1 ) y ( k ) y ( n ) .
    The projections onto the first and the last coordinates are given by
    AG 5 ( Y ) : = P F ( Y ) : = P 1 ( Y ) = y 1 ,
    AG 6 ( Y ) : = P L ( Y ) : = P n ( Y ) = y n .
    Also, the extreme order statistics y 1 and y n are the minimum and maximum functions, respectively,
    AG 7 ( Y ) : = MIN ( Y ) : = OS 1 ( Y ) = min { y 1 , , y n } ,
    AG 8 ( Y ) : = MAX ( Y ) : = OS n ( Y ) = max { y 1 , , y n } ,
    which will sometimes be written by means of the lattice operations ∨ and ∧, respectively, that is,
    MIN ( Y ) = i = 1 n y i , and MAX ( Y ) = i = 1 n y i .
    Note that OS k can be shown in terms of only minima and maxima as follows
    OS k ( Y ) = K = k K [ n ] i K y i = K = n k + 1 K [ n ] i K y i .
    Similarly, the median of an odd number of values Diagonal [ y 1 , , y 2 k 1 ] ( 2 k 1 ) × ( 2 k 1 ) is given by
    MED Diagonal [ y 1 , , y 2 k 1 ] ( 2 k 1 ) × ( 2 k 1 ) = y ( k ) ,
    that can be shown by
    MED Diagonal [ y 1 , , y 2 k 1 ] ( 2 k 1 ) × ( 2 k 1 ) = K = k K [ 2 k 1 ] i K y i = K = k K [ 2 k 1 ] i K y i .
    For instance, we get
    MED ( Diagonal [ y 1 , y 2 , y 3 ] 3 × 3 ) = ( y 1 y 2 ) ( y 1 y 3 ) ( y 2 y 3 ) = ( y 1 y 2 ) ( y 1 y 3 ) ( y 2 y 3 ) .
    For an even number of values Diagonal [ y 1 , , y 2 k ] , the median is given by
    MED Diagonal [ y 1 , , y 2 k ] 2 k × 2 k : = AM Diagonal [ y ( k ) , y ( k + 1 ) ] 2 × 2 = y ( k ) + y ( k + 1 ) 2 .
    For every φ Φ , we also define the φ median, MED φ : Diagonal [ Φ , , Φ ] n × n Φ , by
    AG 9 ( Y ) : = MED φ ( Y ) = MED Diagonal [ y 1 , , y n , φ , , φ n 1 ] ( 2 n 1 ) × ( 2 n 1 ) = MED ( MIN ( Y ) , φ , MAX ( Y ) ) .
  • For every K [ n ] , the partial minimum MIN k : Diagonal [ Φ , , Φ ] n × n Φ and the partial maximum MAX k : Diagonal [ Φ , , Φ ] n × n Φ , associated with K, are respectively given by
    AG 10 ( Y ) : = MIN k ( Y ) : = i K y i ,
    AG 11 ( Y ) : = MAX k ( Y ) : = i K y i .
  • For every weight vector V = Diagonal [ v 1 , , v n ] n × n Diagonal [ Φ , , Φ ] n × n s.t. i = 1 n v i = 1 , the weighted arithmetic mean function WAM V : Diagonal [ Φ , , Φ ] n × n Φ and the ordered weighted averaging function OWA V : Diagonal [ Φ , , Φ ] n × n Φ , associated with V , are respectively given by
    AG 12 ( Y ) : = WAM V ( Y ) : = i = 1 n v i y i ,
    AG 13 ( Y ) : = OWA V ( Y ) : = i = 1 n v i y ( i ) .
  • The sum : Diagonal [ Φ , , Φ ] n × n Φ and product Π : Diagonal [ Φ , , Φ ] n × n Φ functions are respectively given by
    AG 14 ( Y ) : = ( Y ) : = i = 1 n y i ,
    AG 15 ( Y ) : = Π ( Y ) : = i = 1 n y i .
The main issue we are investigating in this section is that of aggregation which refers to the process of merging and combining various values into a single one. Now, we apply the above aggregation functions on Mittag-Leffler-type functions to present a class of controller to study the multi stability for the governing model.
Assume the following Mittag-Leffler-type functions:
  • The one parameter Mittag-Leffler function [43]:
    E 1 ( Y ) : = ( Y ) = i = 0 Y i Γ ( i + 1 ) ,
    where , Y C , i N , and ( ) > 0 .
  • The pre-superhyperbolic supercosine through (52) [43]:
    E 2 ( Y ) : = p r e c o s h ( Y ) = 0.5 ( Y ) + ( Y ) = i = 0 Y 2 i Γ ( ( 2 i ) + 1 ) ,
    where Y , C , and ( ) > 0 .
  • The pre-supercosine function through (52) [43]:
    E 3 ( Y ) : = p r e c o s ( Y ) = 1 2 ( i Y ) + ( i Y ) = i = 0 ( 1 ) i Y 2 i Γ ( ( 2 i ) + 1 ) ,
    where Y , C , and ( ) > 0 .
  • The pre-superhyperbolic supersine through (52) [43]:
    E 4 ( Y ) : = p r e s i n h ( Y ) = 1 2 ( Y ) ( Y ) = i = 0 Y 2 i + 1 Γ ( ( 2 i + 1 ) + 1 ) ,
    where Y , C , and ( ) > 0 .
  • The pre-supersine function through (52) [43]:
    E 5 ( Y ) : = p r e s i n ( Y ) = 1 2 i ( i Y ) ( i Y ) = i = 0 ( 1 ) i Y 2 i + 1 Γ ( ( 2 i + 1 ) + 1 ) ,
    where Y , C , and ( ) > 0 .
Now, we have the following results, for every i = 1 , , 5 .
Corollary 1.
Let T 0 , r i > 3 and Ψ i > 0 be in R and χ : G 3 P be a mapping satisfying χ ( λ 1 , 0 , λ 5 ) = χ ( 0 , λ 3 , λ 5 ) = χ ( λ 1 , λ 3 , 0 ) = 0 and
N ( χ ( λ 1 + λ 2 , λ 3 λ 4 , λ 5 + λ 6 ) + χ ( λ 1 λ 2 , λ 3 + λ 4 , λ 5 λ 6 ) 2 χ ( λ 1 , λ 3 , λ 5 ) + 2 χ ( λ 1 , λ 4 , λ 6 ) 2 χ ( λ 2 , λ 3 , λ 6 ) + 2 χ ( λ 2 , λ 4 , λ 5 ) , T ) N ( λ [ 2 χ ( λ 1 + λ 2 2 , λ 3 λ 4 , λ 5 + λ 6 ) + 2 χ ( λ 1 λ 2 2 , λ 3 + λ 4 , λ 5 λ 6 ) 2 χ ( λ 1 , λ 3 , λ 5 ) + 2 χ ( λ 1 , λ 4 , λ 6 ) 2 χ ( λ 2 , λ 3 , λ 6 ) + 2 χ ( λ 2 , λ 4 , λ 5 ) ] , T ) GTN Diagonal [ AG 1 ( Diagonal [ E 1 Ψ 1 [ λ 1 r 1 + λ 2 r 1 + λ 3 r 1 + λ 4 r 1 + λ 5 r 1 + λ 6 r 1 ] T , , E 5 Ψ 5 [ λ 1 r 5 + λ 2 r 5 + λ 3 r 5 + λ 4 r 5 + λ 5 r 5 + λ 6 r 5 ] T ] ) , , AG 15 ( Diagonal [ E 1 Ψ 1 [ λ 1 r 1 + λ 2 r 1 + λ 3 r 1 + λ 4 r 1 + λ 5 r 1 + λ 6 r 1 ] T , , E 5 Ψ 5 [ λ 1 r 5 + λ 2 r 5 + λ 3 r 5 + λ 4 r 5 + λ 5 r 5 + λ 6 r 5 ] T ] ) ] ,
for all λ 1 , λ 2 , λ 3 , λ 4 , λ 5 , λ 6 G . Then, we can obtain a unique tri-additive mapping χ : G 3 P satisfying
N χ ( λ 1 , λ 3 , λ 5 ) χ ( λ 1 , λ 3 , λ 5 ) , T Diagonal [ σ 1 , , σ 15 ] ,
in which
Diagonal [ σ 1 , , σ 15 ] : = Diagonal [ AG 1 ( Diagonal [ E 1 Ψ 1 [ λ 1 r 1 + 2 λ 3 r 1 2 r 1 + λ 5 r 1 ] ( 1 4 ϑ 1 ) T TN E 1 Ψ 1 [ 2 λ 1 r 1 2 r 1 + 2 λ 3 r 1 2 r 1 + λ 5 r 1 ] ( 1 4 ϑ 1 ) 2 T TN E 1 Ψ 1 [ λ 1 r 1 2 r 1 + λ 3 r 1 2 r 1 + λ 5 r 1 2 r 1 ] ( 1 4 ϑ 1 ) 4 T , , E 5 Ψ 5 [ λ 1 r 5 + 2 λ 3 r 5 2 r 5 + λ 5 r 5 ] ( 1 4 ϑ 5 ) T TN E 5 Ψ 5 [ 2 λ 1 r 5 2 r 5 + 2 λ 3 r 5 2 r 5 + λ 5 r 5 ] ( 1 4 ϑ 5 ) 2 T TN E 5 Ψ 5 [ λ 1 r 5 2 r 5 + λ 3 r 5 2 r 5 + λ 5 r 5 2 r 5 ] ( 1 4 ϑ 5 ) 4 T ] ) , , AG 15 ( Diagonal [ E 1 Ψ 1 [ λ 1 r 1 + 2 λ 3 r 1 2 r 1 + λ 5 r 1 ] ( 1 4 ϑ 1 ) T TN E 1 Ψ 1 [ 2 λ 1 r 1 2 r 1 + 2 λ 3 r 1 2 r 1 + λ 5 r 1 ] ( 1 4 ϑ 1 ) 2 T TN E 1 Ψ 1 [ λ 1 r 1 2 r 1 + λ 3 r 1 2 r 1 + λ 5 r 1 2 r 1 ] ( 1 4 ϑ 1 ) 4 T , , E 5 Ψ 5 [ λ 1 r 5 + 2 λ 3 r 5 2 r 5 + λ 5 r 5 ] ( 1 4 ϑ 5 ) T TN E 5 Ψ 5 [ 2 λ 1 r 5 2 r 5 + 2 λ 3 r 5 2 r 5 + λ 5 r 5 ] ( 1 4 ϑ 5 ) 2 T TN E 5 Ψ 5 [ λ 1 r 5 2 r 5 + λ 3 r 5 2 r 5 + λ 5 r 5 2 r 5 ] ( 1 4 ϑ 5 ) 4 T ] ) ] ,
where ϑ i = 2 r i 1 , for all λ 1 , λ 3 , λ 5 G .
Corollary 2.
Let T 0 and r i < 3 , Ψ i > 0 be in R , and χ : G 3 P be a mapping satisfying χ ( λ 1 , 0 , λ 5 ) = χ ( 0 , λ 3 , λ 5 ) = χ ( λ 1 , λ 3 , 0 ) = 0 and (53) . Then, we can obtain a unique tri-additive mapping χ : G 3 P satisfying
N χ ( λ 1 , λ 3 , λ 5 ) χ ( λ 1 , λ 3 , λ 5 ) , T Diagonal [ σ , , σ ] 15 × 15
in which
Diagonal [ σ , , σ ] 15 × 15 : = Diagonal [ AG 1 ( Diagonal [ E 1 Ψ 1 [ λ 1 r 1 + 2 λ 3 r 1 + λ 5 r 1 ] ( 8 2 ϑ 1 ) T TN E 1 Ψ 1 [ λ 1 r 1 + λ 3 r 1 + 2 r 1 λ 5 r 1 ] ( 4 ϑ 1 ) T TN E 1 Ψ 1 [ λ 1 r 1 + λ 3 r 1 + 2 λ 5 r 1 ] ( 4 ϑ 1 ) 2 T , , E 5 Ψ 5 [ λ 1 r 5 + 2 λ 3 r 5 + λ 5 r 5 ] ( 8 2 ϑ 5 ) T TN E 5 Ψ 5 [ λ 1 r 5 + λ 3 r 5 + 2 r 5 λ 5 r 5 ] ( 4 ϑ 5 ) T TN E 5 Ψ 5 [ λ 1 r 5 + λ 3 r 5 + 2 λ 5 r 5 ] ( 4 ϑ 5 ) 2 T ] 5 × 5 ) , , AG 15 ( Diagonal [ E 1 Ψ 1 [ λ 1 r 1 + 2 λ 3 r 1 + λ 5 r 1 ] ( 8 2 ϑ 1 ) T TN E 1 Ψ 1 [ λ 1 r 1 + λ 3 r 1 + 2 r 1 λ 5 r 1 ] ( 4 ϑ 1 ) T TN E 1 Ψ 1 [ λ 1 r 1 + λ 3 r 1 + 2 λ 5 r 1 ] ( 4 ϑ 1 ) 2 T , , E 5 Ψ 5 [ λ 1 r 5 + 2 λ 3 r 5 + λ 5 r 5 ] ( 8 2 ϑ 5 ) T TN E 5 Ψ 5 [ λ 1 r 5 + λ 3 r 5 + 2 r 5 λ 5 r 5 ] ( 4 ϑ 5 ) T TN E 5 Ψ 5 [ λ 1 r 5 + λ 3 r 5 + 2 λ 5 r 5 ] ( 4 ϑ 5 ) 2 T ] 5 × 5 ) ] 15 × 15 ,
where ϑ i = 2 r i + 1 , for all λ 1 , λ 3 , λ 5 G .
Corollary 3.
Let T 0 , r i > 4 and Ψ i > 0 be in R , and χ : ν 3 ν be a mapping satisfying χ ( λ 1 , 0 , λ 5 ) = χ ( 0 , λ 3 , λ 5 ) = χ ( λ 1 , λ 3 , 0 ) = 0 and
N ( χ ( Λ 1 ( λ 1 + λ 2 ) , Λ 2 ( λ 3 λ 4 ) , Λ 3 ( λ 5 + λ 6 ) ) + χ ( Λ 1 ( λ 1 λ 2 ) , Λ 2 ( λ 3 + λ 4 ) , Λ 3 ( λ 5 λ 6 ) ) Λ 1 Λ 2 Λ 3 ( 2 χ ( λ 1 , λ 3 , λ 5 ) 2 χ ( λ 1 , λ 4 , λ 6 ) + 2 χ ( λ 2 , λ 3 , λ 6 ) 2 χ ( λ 2 , λ 4 , λ 5 ) ) , T ) N ( λ [ 2 χ ( λ 1 + λ 2 2 , λ 3 λ 4 , λ 5 + λ 6 ) + 2 χ ( λ 1 λ 2 2 , λ 3 + λ 4 , λ 5 λ 6 ] 2 χ ( λ 1 , λ 3 , λ 5 ) + 2 χ ( λ 1 , λ 4 , λ 6 ) 2 χ ( λ 2 , λ 3 , λ 6 ) + 2 χ ( λ 2 , λ 4 , λ 5 ) ] , T ) GTN Diagonal [ AG 1 ( Diagonal [ E 1 Ψ 1 [ λ 1 r 1 + λ 2 r 1 + λ 3 r 1 + λ 4 r 1 + λ 5 r 1 + λ 6 r 1 ] T , , E 5 Ψ 5 [ λ 1 r 5 + λ 2 r 5 + λ 3 r 5 + λ 4 r 5 + λ 5 r 5 + λ 6 r 5 ] T ] 5 × 5 ) , , AG 15 ( Diagonal [ E 1 Ψ 1 [ λ 1 r 1 + λ 2 r 1 + λ 3 r 1 + λ 4 r 1 + λ 5 r 1 + λ 6 r 1 ] T , , E 5 Ψ 5 [ λ 1 r 5 + λ 2 r 5 + λ 3 r 5 + λ 4 r 5 + λ 5 r 5 + λ 6 r 5 ] T ] 5 × 5 ) ] 15 × 15
for all Λ 1 , Λ 2 , Λ 3 Δ 1 and all λ 1 , λ 2 , λ 3 , λ 4 , λ 5 , λ 6 ν . Then, we can obtain a unique C trilinear mapping ϖ : ν 3 ν satisfying
N χ ( λ 1 , λ 3 , λ 5 ) ϖ ( λ 1 , λ 3 , λ 5 ) , T Diagonal [ σ 1 , , σ 15 ]
where Diagonal [ σ 1 , , σ 15 ] satisfies (55) for all λ 1 , λ 3 , λ 5 ν .
In addition, if the mapping χ : ν 3 ν satisfies χ ( 2 λ 1 , λ 3 , λ 5 ) = 2 χ ( λ 1 , λ 3 , λ 5 ) and
N χ ( λ 1 λ 2 , λ 3 , λ 5 ) χ ( λ 1 , λ 3 , λ 5 ) λ 2 λ 1 χ ( λ 2 , λ 3 , λ 5 ) , T Diagonal [ AG 1 ( Diagonal [ E 1 Ψ 1 [ λ 1 r 1 + λ 2 r 1 + λ 3 r 1 + λ 4 r 1 + λ 5 r 1 + λ 6 r 1 ] T , , E 5 Ψ 5 [ λ 1 r 5 + λ 2 r 5 + λ 3 r 5 + λ 4 r 5 + λ 5 r 5 + λ 6 r 5 ] T ] 5 × 5 ) , , AG 15 ( Diagonal [ E 1 Ψ 1 [ λ 1 r 1 + λ 2 r 1 + λ 3 r 1 + λ 4 r 1 + λ 5 r 1 + λ 6 r 1 ] T , , E 5 Ψ 5 [ λ 1 r 5 + λ 2 r 5 + λ 3 r 5 + λ 4 r 5 + λ 5 r 5 + λ 6 r 5 ] T ] 5 × 5 ) ] 15 × 15 ,
and
N χ ( β ( 1 ) , β ( 2 ) , β ( 3 ) ) χ ( 1 , 2 , 3 ) , T Diagonal [ AG 1 ( Diagonal [ E 1 Ψ 1 [ λ 1 r 1 + λ 2 r 1 + λ 3 r 1 + λ 4 r 1 + λ 5 r 1 + λ 6 r 1 ] T , , E 5 Ψ 5 [ λ 1 r 5 + λ 2 r 5 + λ 3 r 5 + λ 4 r 5 + λ 5 r 5 + λ 6 r 5 ] T ] 5 × 5 ) , , AG 15 ( Diagonal [ E 1 Ψ 1 [ λ 1 r 1 + λ 2 r 1 + λ 3 r 1 + λ 4 r 1 + λ 5 r 1 + λ 6 r 1 ] T , , E 5 Ψ 5 [ λ 1 r 5 + λ 2 r 5 + λ 3 r 5 + λ 4 r 5 + λ 5 r 5 + λ 6 r 5 ] T ] 5 × 5 ) ] 15 × 15
for all permutations ( β ( 1 ) , β ( 2 ) , β ( 3 ) ) of ( 1 , 2 , 3 ) , and for all λ 1 , λ 2 , λ 3 , 1 , 2 , 3 , λ 5 ν , then, the C trilinear mapping ϖ : ν 3 ν is a permuting tri-derivation.
Corollary 4.
Let T 0 , r i < 3 and Ψ i > 0 be in R , and χ : ν 3 ν be a mapping satisfying (58) and χ ( λ 1 , 0 , λ 5 ) = χ ( 0 , λ 3 , λ 5 ) = χ ( λ 1 , λ 3 , 0 ) = 0 , for all λ 1 , λ 3 , λ 5 ν . Then, we can find a unique C trilinear mapping ϖ : ν 3 ν satisfying
N χ ( λ 1 , λ 3 , λ 5 ) ϖ ( λ 1 , λ 3 , λ 5 ) , T Diagonal [ σ 1 , , σ 15 ] ,
where Diagonal [ σ 1 , , σ n ] satisfies (57), for all λ 1 , λ 3 , λ 5 ν .
Also, if the mapping χ : ν 3 ν satisfies (59), (60) and χ ( 2 λ 1 , λ 3 , λ 5 ) = 2 χ ( λ 1 , λ 3 , λ 5 ) for all λ 1 , λ 3 , λ 5 ν , then the C trilinear mapping ϖ : ν 3 ν is a permuting tri-derivation.
Corollary 5.
Let T 0 , r i > 4 and Ψ i > 0 be in R , and χ : ν 3 ν be a mapping satisfying (58) and χ ( λ 1 , 0 , λ 5 ) = χ ( 0 , λ 3 , λ 5 ) = χ ( λ 1 , λ 3 , 0 ) = 0 for all λ 1 , λ 3 , λ 5 ν . Then, we can find a unique C trilinear mapping ϖ : ν 3 ν satisfying (59).
Also, if the mapping χ : ν 3 ν satisfies (60) , χ ( 2 ϕ , λ 3 , λ 5 ) = 2 χ ( ϕ , λ 3 , λ 5 ) and
N χ ( ϕ λ 2 , λ 3 , λ 5 ) χ ( ϕ , λ 3 , λ 5 ) λ 2 ϕ χ ( λ 2 , λ 3 , λ 5 ) , T Diagonal [ AG 1 ( Diagonal [ E 1 Ψ 1 [ 1 + λ 2 r 1 + 2 λ 3 r 1 + 2 λ 5 r 1 ] T , , E 5 Ψ 5 [ 1 + λ 2 r 5 + 2 λ 3 r 5 + 2 λ 5 r 5 ] T ] 5 × 5 ) , , AG 15 ( Diagonal [ E 1 Ψ 1 [ 1 + λ 2 r 1 + 2 λ 3 r 1 + 2 λ 5 r 1 ] T , , E 5 Ψ 5 [ 1 + λ 2 r 5 + 2 λ 3 r 5 + 2 λ 5 r 5 ] T ] 5 × 5 ) ] 15 × 15 ,
for any ϕ U ( ν ) and all λ 2 , λ 3 , λ 5 ν , then the C trilinear mapping ϖ : ν 3 ν is a permuting tri-derivation.
Corollary 6.
Let T 0 , r i < 3 and Ψ i > 0 be in R , and χ : ν 3 ν be a mapping satisfying (58) and χ ( λ 1 , 0 , λ 5 ) = χ ( 0 , λ 3 , λ 5 ) = χ ( λ 1 , λ 3 , 0 ) = 0 for all λ 1 , λ 3 , λ 5 ν . Then, we can obtain a unique C trilinear mapping ϖ : ν 3 ν satisfying (61).
In addition, if the mapping χ : ν 3 ν satisfies (60), (62) and χ ( 2 ϕ , λ 3 , λ 5 ) = 2 χ ( ϕ , λ 3 , λ 5 ) for all ϕ U ( ν ) and all λ 3 , λ 5 ν , then the C trilinear mapping ϖ : ν 3 ν is a permuting tri-derivation.
Corollary 7.
Let T 0 , r i > 6 and Ψ i > 0 be in R , and χ : ν 3 Θ be a mapping satisfying (58) and χ ( λ 1 , 0 , λ 5 ) = χ ( 0 , λ 3 , λ 5 ) = χ ( λ 1 , λ 3 , 0 ) = 0 for all λ 1 , λ 2 , λ 3 , λ 4 , λ 5 , λ 6 ν . Then, we can find a unique C trilinear mapping ρ : ν 3 Θ satisfying
N χ ( λ 1 , λ 3 , λ 5 ) ρ ( λ 1 , λ 3 , λ 4 ) , T Diagonal [ σ 1 , , σ 15 ]
in which Diagonal [ σ 1 , , σ 15 ] satisfies (55), for all λ 1 , λ 3 , λ 5 ν .
Also, if the mapping χ : ν 3 Θ satisfies (60) and
N χ ( λ 1 λ 2 , λ 3 λ 4 , λ 5 λ 6 ) χ ( λ 1 , λ 3 , λ 5 ) χ ( λ 2 , λ 4 , λ 6 ) , T Diagonal [ AG 1 ( Diagonal [ E 1 Ψ 1 [ λ 1 r 1 + λ 2 r 1 + λ 3 r 1 + λ 4 r 1 + λ 5 r 1 + λ 6 r 1 ] T , , E 5 Ψ 5 [ λ 1 r 5 + λ 2 r 5 + λ 3 r 5 + λ 4 r 5 + λ 5 r 5 + λ 6 r 5 ] T ] 5 × 5 ) , , AG 15 ( Diagonal [ E 1 Ψ 1 [ λ 1 r 1 + λ 2 r 1 + λ 3 r 1 + λ 4 r 1 + λ 5 r 1 + λ 6 r 1 ] T , , E 5 Ψ 5 [ λ 1 r 5 + λ 2 r 5 + λ 3 r 5 + λ 4 r 5 + λ 5 r 5 + λ 6 r 5 ] T ] 5 × 5 ) ] 15 × 15 ,
for all λ 1 , λ 2 , λ 3 , λ 4 , λ 5 , λ 6 ν , then, the C trilinear mapping ρ : ν 3 Θ is a permuting tri-homomorphism.
Corollary 8.
Let T 0 , r i < 3 and Ψ i > 0 be in R , and χ : ν 3 Θ be a mapping satisfying (58) and χ ( λ 1 , 0 , λ 5 ) = χ ( 0 , λ 3 , λ 5 ) = χ ( λ 1 , λ 3 , 0 ) = 0 for all λ 1 , λ 2 , λ 3 , λ 4 , λ 5 , λ 6 ν . Then, we can find a unique C trilinear mapping ρ : ν 3 Θ satisfying
N χ ( λ 1 , λ 3 , λ 4 ) ρ ( λ 1 , λ 3 , λ 4 ) , T Diagonal [ σ 1 , , σ 1 ] 15 × 15
where Diagonal [ σ 1 , , σ 1 ] 15 × 15 satisfies (57), for all λ 1 , λ 3 , λ 5 ν .
Besides, if the mapping χ : ν 3 Θ satisfies (60) and (64) , then the C trilinear mapping ρ : ν 3 Θ is a permuting tri-homomorphism.
Corollary 9.
Let T 0 , r i > 6 and Ψ i > 0 be in R , and χ : ν 3 Θ be a mapping satisfying (58) and χ ( λ 1 , 0 , λ 5 ) = χ ( 0 , λ 3 , λ 5 ) = χ ( λ 1 , λ 3 , 0 ) = 0 for all λ 1 , λ 2 , λ 3 , λ 4 , λ 5 , λ 6 ν . Then, we can find a unique C trilinear mapping ρ : ν 3 Θ satisfying (63).
Also, if the mapping χ : ν 3 Θ satisfies (60) and
N χ ( ϕ 1 φ 1 , ϕ 2 φ 2 , ϕ 3 φ 3 ) χ ( ϕ 1 , ϕ 2 , ϕ 3 ) χ ( φ 1 , φ 2 , φ 3 ) , T Diagonal [ 6 T , , 6 T ] 15 × 15 ,
for all ϕ i , φ i U ( ν ) , i = 1 , 2 , 3 , then, the C trilinear mapping ρ : ν 3 Θ is a permuting tri-homomorphism.
Corollary 10.
Let T 0 , r i < 3 and Ψ i > 0 be in R , and χ : ν 3 Θ be a mapping satisfying (58) and χ ( λ 1 , 0 , λ 5 ) = χ ( 0 , λ 3 , λ 5 ) = χ ( λ 1 , λ 3 , 0 ) = 0 for all λ 1 , λ 2 , λ 3 , λ 4 , λ 5 , λ 6 ν . Then, we can find a unique C trilinear mapping ρ : ν 3 Θ satisfying (65).
Besides, if χ : ν 3 Θ satisfies (60) and (66) , then, the C trilinear mapping ρ : ν 3 Θ is a permuting tri-homomorphism.

6. Conclusions

The main goal of the paper is to propose a new concept of Ulam-type stability, i.e., multi-stability, through the classical, well-known special functions and aggregation maps, and to gain the best approximation error estimates by a diverse concept of perturbation stability in fuzzy spaces. This stability allows us to get various approximations depending on the different special functions and aggregation maps that are initially chosen and to evaluate optimal stability and minimal error which enable us to obtain a unique optimum solution of functional equations. Stability analysis, in the sense of Ulam and others, has received considerable attention from researchers. However, the effective generalization of Ulam stability problems and evaluating optimized controllability and stability are new issues. The multi-stability covers not only the previous concepts, but also considers the optimization of the problem. Multi-stability provides a comprehensive discussion of optimizing the different types of Ulam stabilities of mathematical models used in the natural sciences (like: physics, earth science, biology, chemistry), social sciences (like: psychology, economics, political science, sociology) and engineering sciences (like: electrical engineering, computer science). This stability allows us to obtain the best approximation results of optimal control problems through classes of special functions.

Author Contributions

Methodology, C.L.; Validation, D.O.; Writing—original draft, S.R.A. and D.O.; Writing—review & editing, R.S., D.O. and C.L.; Supervision, R.S. All of the authors conceived of the study, participated in its design and coordination, drafted the manuscript, and participated in the sequence alignment. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Not applicable.

Acknowledgments

The authors thank the anonymous referees for their helpful comments that improved the quality of the manuscript. Chenkuan Li is supported by the Natural Sciences and Engineering Research Council of Canada (Grant No. 2019-03907).

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Ulam, S.M. A Collection of the Mathematical Problems; Interscience Publ.: New York, NY, USA, 1960. [Google Scholar]
  2. Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  3. Brillouet-Belluot, N.; Brzdek, J.; Cieplinski, K. On some recent developments in Ulam’s type stability. Abstr. Appl. Anal. 2012, 2012, 716936. [Google Scholar] [CrossRef]
  4. Brzdek, J. On functionals which are orthogonally additive modulo Z. Results Math. 1996, 30, 25–38. [Google Scholar] [CrossRef]
  5. Brzdek, J. On the Cauchy difference on normed spaces. Abh. Math. Sem. Univ. Hamburg 1996, 66, 143–150. [Google Scholar] [CrossRef]
  6. Brzdek, J. A Note on Stability of Additive Mappings. Stability of Mappings of Hyers-Ulam Type; Hadronic Press: Palm Harbor, FL, USA, 1994. [Google Scholar]
  7. Benzarouala, C.; Brzdek, J.; Oubbi, L. A fixed point theorem and Ulam stability of a general linear functional equation in random normed spaces. J. Fixed Point Theory Appl. 2023, 25, 33. [Google Scholar] [CrossRef]
  8. Brzdek, J. Banach limit, fixed points and Ulam stability. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 2022, 116, 79. [Google Scholar] [CrossRef]
  9. Brzdek, J.; Cieplinski, K. Hyperstability and superstability. Abstr. Appl. Anal. 2013, 2013, 401756. [Google Scholar] [CrossRef] [Green Version]
  10. Gajda, Z.; Kominek, Z. On separation theorems for subadditive and superadditive functionals. Studia Math. 1991, 100, 25–38. [Google Scholar] [CrossRef] [Green Version]
  11. Ger, R.; Semrl, P. The stability of the exponential equation. Proc. Am. Math. Soc. 1996, 124, 779–787. [Google Scholar] [CrossRef]
  12. Sikorska, J. Orthogonalities and functional equations. Aequationes Math. 2015, 89, 215–277. [Google Scholar] [CrossRef] [Green Version]
  13. Fechner, W.; Sikorska, J. On a separation for the Cauchy equation on spheres. Nonlinear Anal. 2012, 75, 6306–6311. [Google Scholar] [CrossRef]
  14. Forti, G.L.; Schwaiger, J. Stability of homomorphisms and completeness. C. R. Math. Rep. Acad. Sci. Can. 1989, 11, 215–220. [Google Scholar]
  15. Bourgin, D.G. Classes of transformations and bordering transformations. Bull. Am. Math. Soc. 1951, 57, 223–237. [Google Scholar] [CrossRef] [Green Version]
  16. Rassias, J.M. Solution of a stability problem of Ulam. In Functional Analysis, Approximation Theory and Numerical Analysis; World Scientific: Singapore, 1994; pp. 241–249. [Google Scholar]
  17. Aoki, T. On the stability of the linear transformation in Banach spaces. J. Math. Soc. Jpn. 1950, 2, 64–66. [Google Scholar] [CrossRef]
  18. Obłoza, M. Hyers stability of the linear differential equation. Rocznik Nauk.-Dydakt. Prace Mat. 1993, 13, 259–270. [Google Scholar]
  19. Obłoza, M. Connections between Hyers and Lyapunov stability of the ordinary differential equations. Rocznik Nauk.-Dydakt. Prace Mat. 1997, 14, 141–146. [Google Scholar]
  20. Liang, Y.; Shi, Y.; Fan, Z. Exact solutions and Hyers-Ulam stability of fractional equations with double delays. Fract. Calc. Appl. Anal. 2023, 26, 439–460. [Google Scholar] [CrossRef]
  21. Kahouli, O.; Makhlouf, A.B.; Mchiri, L.; Rguigui, H. Hyers-Ulam stability for a class of Hadamard fractional Itô–Doob stochastic integral equations. Chaos Solitons Fractals 2023, 166, 112918. [Google Scholar] [CrossRef]
  22. Khan, N.; Ahmad, Z.; Shah, J.; Murtaza, S.; Albalwi, M.D.; Ahmad, H.; Baili, J.; Yao, S.W. Dynamics of chaotic system based on circuit design with Ulam stability through fractal-fractional derivative with power law kernel. Sci. Rep. 2023, 13, 5043. [Google Scholar] [CrossRef] [PubMed]
  23. Vu, H.; Rassias, J.M.; Hoa, N.V. Hyers-Ulam stability for boundary value problem of fractional differential equations with k-Caputo fractional derivative. Math. Methods Appl. Sci. 2023, 46, 438–460. [Google Scholar] [CrossRef]
  24. Sivashankar, M.; Sabarinathan, S.; Nisar, K.S.; Ravichandran, C.; Kumar, B.S. Some properties and stability of Helmholtz model involved with nonlinear fractional difference equations and its relevance with quadcopter. Chaos Solitons Fractals 2023, 168, 113161. [Google Scholar] [CrossRef]
  25. Li, G.; Zhang, Y.; Guan, Y.; Li, W. Stability analysis of multi-point boundary conditions for fractional differential equation with non-instantaneous integral impulse. Math. Biosci. Eng. 2023, 20, 7020–7041. [Google Scholar] [CrossRef]
  26. Brzdek, J.; Fechner, W.; Moslehian, M.S.; Sikorska, J. Recent developments of the conditional stability of the homomorphism equation. Banach J. Math. Anal. 2015, 9, 278–326. [Google Scholar] [CrossRef]
  27. Aderyani, S.R.; Saadati, R.; Rassias, T.M.; Srivastava, H.M. Existence, Uniqueness and the Multi-Stability Results for a W-Hilfer Fractional Differential Equation. Axioms 2023, 12, 681. [Google Scholar] [CrossRef]
  28. Aderyani, S.R.; Saadati, R.; Allahviranloo, T.; Abbasbandy, S.; Catak, M. Fuzzy approximation of a fractional Lorenz system and a fractional financial crisis. Iran. J. Fuzzy Syst. 2023, 20, 27–36. [Google Scholar]
  29. Park, C.; Najati, A. Homomorphisms and derivations in C * Algebras. Abstr. Appl. Anal. 2007, 2007, 80630. [Google Scholar]
  30. Park, C.; Rassias, M.T. Additive functional equations and partial multipliers in C*-algebras, Revista de la Real Academia de Ciencias Exactas. Serie A Matemticas 2019, 113, 2261–2275. [Google Scholar]
  31. Selvan, A.P.; Najati, A. Hyers–Ulam stability and Hyper-stability of a Jensen-type functional equation on 2-Banach spaces. J. Inequalities Appl. 2022, 2022, 32. [Google Scholar] [CrossRef]
  32. Aderyani, S.R.; Saadati, R. Stability and controllability results by n-ary aggregation functions in matrix valued fuzzy n-normed spaces. Inf. Sci. 2023, 643, 119265. [Google Scholar] [CrossRef]
  33. Chen, S.; Li, H.L.; Bao, H.; Zhang, L.; Jiang, H.; Li, Z. Global Mittag-Leffler stability and synchronization of discrete-time fractional-order delayed quaternion-valued neural networks. Neurocomputing 2022, 511, 290–298. [Google Scholar] [CrossRef]
  34. Kaiser, Z.; P’ales, Z. An example of a stable functional equation when the Hyers method does not work. JIPAM J. Inequal. Pure Appl. Math. 2005, 6, 14. [Google Scholar]
  35. Tabor, J.; Tabor, J. General stability of functional equations of linear type. J. Math. Anal. Appl. 2007, 328, 192–200. [Google Scholar] [CrossRef] [Green Version]
  36. Sz’ekelyhidi, L. Note on a stability theorem. Can. Math. Bull. 1982, 25, 500–501. [Google Scholar] [CrossRef]
  37. P’ales, Z. Generalized stability of the Cauchy functional equation. Aequationes Math. 1998, 56, 222–232. [Google Scholar] [CrossRef]
  38. Baker, J.A. The stability of certain functional equations. Proc. Am. Math. Soc. 1991, 112, 729–732. [Google Scholar] [CrossRef]
  39. Radu, V. The fixed point alternative and the stability of functional equations. Fixed Point Theory 2003, 4, 91–96. [Google Scholar]
  40. Halaš, R.; Mesiar, R.; Pócs, J. On the number of aggregation functions on finite chains as a generalization of 470 Dedekind numbers. Fuzzy Sets Syst. 2023, 466, 108441. [Google Scholar] [CrossRef]
  41. Kurac, Z. Transfer-stable aggregation functions: Applications, challenges, and emerging trends. Decis. Anal. J. 2023, 7, 100210. [Google Scholar] [CrossRef]
  42. Grabisch, M.; Marichal, J.L.; Mesiar, R.; Pap, E. Aggregation Functions; Cambridge University Press: Cambridge, UK, 2009; Volume 127. [Google Scholar]
  43. Yang, X.J. Theory and Applications of Special Functions for Scientists and Engineers; Springer: Singapore, 2021. [Google Scholar]
  44. Zedam, L.; De Baets, B. Triangular norms on bounded trellises. Fuzzy Sets Syst. 2023, 462, 108468. [Google Scholar] [CrossRef]
  45. Aderyani, S.R.; Saadati, R.; Mesiar, R. Estimation of permuting tri-homomorphisms and permuting tri-derivations associated with the tri-additive Υ-random operator inequality in matrix MB–algebra. Int. J. Gen. Syst. 2022, 51, 547–569. [Google Scholar] [CrossRef]
  46. Aderyani, S.R.; Saadati, R.; Abdeljawad, T.; Mlaiki, N. Multi-stability of non homogenous vector-valued fractional differential equations in matrix-valued Menger spaces. Alex. Eng. J. 2022, 61, 10913–10923. [Google Scholar] [CrossRef]
  47. Bae, J.H.; Park, W.G. Approximate bi-homomorphisms and bi-derivations in C-ternary algebras. Bull. Korean Math. Soc. 2010, 47, 195–209. [Google Scholar] [CrossRef] [Green Version]
  48. Park, C.; Jin, Y.; Shin, D.Y.; Zhang, X.; Govindan, V. Permuting triderivations and permuting trihomomorphisms in Banach algebras. Rocky Mt. J. Math. 2020, 5, 1793–1806. [Google Scholar] [CrossRef]
  49. Youssef, M.I. Generalized fractional delay functional equations with Riemann-Stieltjes and infinite point nonlocal conditions. J. Math. Comput. Sci. 2022, 24, 33–48. [Google Scholar] [CrossRef]
  50. Jakhar, J.; Chugh, R.; Jakhar, J. Solution and intuitionistic fuzzy stability of 3-dimensional cubic functional equation: Using two different methods. J. Math. Comput. Sci. 2022, 25, 103–114. [Google Scholar] [CrossRef]
  51. Kumar Senthil, B.V.; Al-Shaqsi, K.; Sabarinathan, S. Dislocated quasi-metric stability of a multiplicative inverse functional equation. J. Math. Comput. Sci. 2022, 24, 140–146. [Google Scholar] [CrossRef]
  52. Mihet, D. On the stability of the additive Cauchy functional equation in random normed spaces. Appl. Math. Lett. 2011, 24, 2005–2009. [Google Scholar] [CrossRef] [Green Version]
  53. Park, C. Stability of some set-valued functional equations. Appl. Math. Lett. 2011, 24, 1910–1914. [Google Scholar] [CrossRef] [Green Version]
  54. Karthikeyan, S.; Park, C.; Palani, P.; Kumar, T.R.K. Stability of an additive-quartic functional equation in modular spaces. J. Math. Comput. Sci. 2022, 26, 22–40. [Google Scholar] [CrossRef]
  55. Aljoufi, L.S.; Ahmed, A.M.; Mohammady, S.A. On globally asymptotic stability of a fourth-order rational difference equation. J. Math. Comput. Sci. 2022, 27, 176–183. [Google Scholar] [CrossRef]
  56. Singh, D.K.; Grover, S. On the stability of a sum form functional equation related to entropies of type (α, β). J. Nonlinear Sci. Appl. 2021, 14, 168–180. [Google Scholar] [CrossRef]
  57. Chalishajar, D.; Ramkumar, K.; Anguraj, A.; Ravikumar, K.; Diop, M.A. Controllability of neutral impulsive stochastic functional integrodifferential equations driven by a fractional Brownian motion with infinite delay via resolvent operator. J. Nonlinear Sci. Appl. 2022, 15, 172–185. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Aderyani, S.R.; Saadati, R.; O’Regan, D.; Li, C. On a New Approach for Stability and Controllability Analysis of Functional Equations. Mathematics 2023, 11, 3458. https://doi.org/10.3390/math11163458

AMA Style

Aderyani SR, Saadati R, O’Regan D, Li C. On a New Approach for Stability and Controllability Analysis of Functional Equations. Mathematics. 2023; 11(16):3458. https://doi.org/10.3390/math11163458

Chicago/Turabian Style

Aderyani, Safoura Rezaei, Reza Saadati, Donal O’Regan, and Chenkuan Li. 2023. "On a New Approach for Stability and Controllability Analysis of Functional Equations" Mathematics 11, no. 16: 3458. https://doi.org/10.3390/math11163458

APA Style

Aderyani, S. R., Saadati, R., O’Regan, D., & Li, C. (2023). On a New Approach for Stability and Controllability Analysis of Functional Equations. Mathematics, 11(16), 3458. https://doi.org/10.3390/math11163458

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop