Risk Assessment Analysis of Multiple Failure Modes Using the Fuzzy Rough FMECA Method: A Case of FACDG
Abstract
:1. Introduction
2. Methodology
2.1. Fuzzy Sets Theory
2.2. Rough Number Theory
2.3. Comprehensive Weight Analysis
2.3.1. Subjective Weight Analysis
2.3.2. Objective Weight Analysis
2.4. Risk Priority Ranking
2.4.1. TOPSIS Analysis
2.4.2. Grey Relational Analysis
3. Application Example: The Case of a Certain FACDG
3.1. Failure Modes Analysis
3.2. Analysis of Fuzzy Assessment
3.3. Weights of Risk Assessment Factors
3.3.1. Calculation of Subjective Weights
3.3.2. Calculation of Objective Weights
3.4. Risk Ranking of Failure Modes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pan, A.X.; Gong, Y.; Yang, Z.G. Failure analysis on abnormal leakage of radiator for high-speed train transformer. Eng. Fail. Anal. 2021, 129, 105673. [Google Scholar] [CrossRef]
- Hu, Y.X.; Tan, A.C.; Chen, L.; Li, Y.P. Failure analysis of fractured motor bolts in high-speed train due to cardan shaft misalignment. Eng. Fail. Anal. 2021, 122, 105246. [Google Scholar] [CrossRef]
- Fan, T.B.; Ren, Z.S.; Xue, R. Load variation of the wheel-mounted brake disc bolts of a high-speed train. Eng. Fail. Anal. 2021, 119, 105001. [Google Scholar] [CrossRef]
- Zhao, H.W.; Liang, J.Y.; Liu, C.Q. High-speed EMUs: Characteristics of technological development and trends. Engineering 2020, 6, 234–244. [Google Scholar] [CrossRef]
- Liu, P.; Yang, L.X.; Gao, Z.Y.; Li, S.K.; Gao, Y. Fault tree analysis combined with quantitative analysis for high-speed railway accidents. Saf. Sci. 2015, 79, 344–357. [Google Scholar] [CrossRef]
- Yang, Z.Y.; Han, J.M.; Li, W.J.; Li, Z.Q.; Pan, L.K.; Shi, X.L. Analyzing the mechanisms of fatigue crack initiation and propagation in CRH EMU brake discs. Eng. Fail. Anal. 2013, 34, 121–128. [Google Scholar] [CrossRef]
- Zhao, P.; Han, B.M.; Li, D.W.; Li, Y.W. Model and algorithm for the first-level maintenance operation optimization of EMU trains. J. Intell. Fuzzy Syst. 2021, 41, 2145–2160. [Google Scholar] [CrossRef]
- Appoh, F.; Yunusa-Kaltungo, K. Dynamic hybrid model for comprehensive risk assessment: A case study of train derailment due to coupler failure. IEEE Access 2022, 10, 24587–24600. [Google Scholar] [CrossRef]
- Zhu, T.; Yang, B.Z.; Yang, C.; Xiao, S.N.; Yang, G.W.; Yang, B. The mechanism for the coupler and draft gear and its influence on safety during a train collision. Int. J. Veh. Syst. Dyn. 2018, 56, 1375–1393. [Google Scholar] [CrossRef]
- Dinmohammadi, F.; Alkali, B.; Shafiee, M.; Bérenguer, C.; Labib, A. Risk evaluation of railway rolling stock failures using FMECA technique: A case study of passenger door system. Urban Rail Transit 2016, 2, 128–145. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.; Singh, S.; Singh, A. Distribution transformer failure modes, effects and criticality analysis (FMECA). Eng. Fail. Anal. 2019, 99, 180–191. [Google Scholar] [CrossRef]
- Carpitella, S.; Certa, A.; Izquierdo, J.; Fata, C.M.L. A combined multi-criteria approach to support FMECA analyses: A real-world case. Reliab. Eng. Syst. Saf. 2018, 169, 394–402. [Google Scholar] [CrossRef] [Green Version]
- Zhou, A.M.; Yu, D.J.; Zhang, W.Y. A research on intelligent fault diagnosis of wind turbines based on ontology and FMECA. Adv. Eng. Inform. 2015, 29, 115–125. [Google Scholar] [CrossRef]
- Pantelić, M.P.; Bošnjak, S.M.; Misita, M.Z.; Gnjatović, N.B.; Stefanović, A.Z. Service FMECA of a bucket wheel excavator. Eng. Fail. Anal. 2020, 108, 104289. [Google Scholar] [CrossRef]
- Karatop, B.; Taşkan, B.; Adar, E.; Kubat, C. Decision analysis related to the renewable energy investments in Turkey based on a Fuzzy AHP-EDAS-Fuzzy FMEA approach. Comput. Comput. Eng. 2021, 151, 106958. [Google Scholar] [CrossRef]
- Elidolu, G.; Sezer, S.I.; Akyuz, E.; Arslan, O.; Arslanoglu, Y. Operational risk assessment of ballasting and de-ballasting on-board tanker ship under FMECA extended Evidential Reasoning (ER) and Rule-based Bayesian Network (RBN) approach. Reliab. Eng. Syst. Saf. 2023, 231, 108975. [Google Scholar] [CrossRef]
- Akyuz, E.; Celik, E. A quantitative risk analysis by using interval type-2 fuzzy FMEA approach: The case of oil spill. Marit. Policy Manag. 2018, 45, 979–994. [Google Scholar] [CrossRef]
- Tazi, N.; Châtelet, E.; Bouzidi, Y. Using a hybrid cost-FMEA analysis for wind turbine reliability analysis. Energies 2017, 10, 276. [Google Scholar] [CrossRef] [Green Version]
- Shafiee, M.; Dinmohammadi, F. An FMEA-based risk assessment approach for wind turbine systems: A comparative study of onshore and offshore. Energies 2014, 7, 619–642. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Jeong, H.Y.; Park, J.S. Development of the FMECA process and analysis methodology for railroad systems. Int. J. Automot. Technol. 2009, 10, 753–759. [Google Scholar] [CrossRef]
- Kim, J.H.; Jeong, H.Y. Evaluation of the adequacy of maintenance tasks using the failure consequences of railroad vehicles. Reliab. Eng. Syst. Saf. 2013, 117, 30–39. [Google Scholar] [CrossRef]
- Cheng, X.Q.; Xing, Z.Y.; Qin, Y.; Zhang, Y.; Pang, S.H.; Xia, J. Reliability analysis of metro door system based on FMECA. J. Intell. Learn. Syst. Appl. 2013, 5, 216–220. [Google Scholar] [CrossRef] [Green Version]
- Fang, F.; Zhao, Z.J.; Huang, C.; Zhang, X.Y.; Wang, H.T.; Yang, Y.J. Application of reliability-centered maintenance in metro door system. IEEE Access 2019, 7, 186167–186174. [Google Scholar] [CrossRef]
- Deng, Y.L.; Li, Q.M.; Lu, Y. A research on subway physical vulnerability based on network theory and FMECA. Saf. Sci. 2015, 80, 127–134. [Google Scholar] [CrossRef]
- Fu, Y.; Qin, Y.; Wang, W.Z.; Liu, X.W.; Jia, L.M. An extended FMEA model based on cumulative prospect theory and type-2 intuitionistic fuzzy VIKOR for the railway train risk prioritization. Entropy 2020, 22, 1418. [Google Scholar] [CrossRef]
- Mohammadzadeh, A.; Zhang, C.W.; Alattas, K.A.; El-Sousy, F.F.M.; Vu, M.D. Fourier-based type-2 fuzzy neural network: Simple and effective for high dimensional problems. Neurocomputing 2023, 547, 126316. [Google Scholar] [CrossRef]
- Bognár, F.; Hegedűs, C. Analysis and consequences on some aggregation functions of PRISM (partial risk map) risk assessment method. Mathematics 2022, 10, 676. [Google Scholar] [CrossRef]
- Ouyang, L.H.; Che, Y.H.; Yan, L.; Park, C. Multiple perspectives on analyzing risk factors in FMEA. Comput. Ind. 2022, 141, 103712. [Google Scholar] [CrossRef]
- Huang, W.C.; Kou, X.Y.; Zhang, Y.; Mi, R.W.; Yin, D.Z.; Xiao, W.; Liu, Z.R. Operational failure analysis of high-speed electric multiple units: A Bayesian network-K2 algorithm-expectation maximization approach. Reliab. Eng. Syst. Saf. 2021, 205, 107250. [Google Scholar] [CrossRef]
- Xu, Z.J.; Zhang, Y.P.; Su, H.S. Risk evaluation approach and application research on fuzzy-FMECA method based on cloud model. TELKOMNIKA Indones. J. Electr. Eng. 2014, 12, 1509–1518. [Google Scholar] [CrossRef]
- Su, H.S.; Wang, D.T.; Su, L. Fuzzy FMECA risk evaluation and its applications in Chinese train control systems based on cloud model. J. Intell. Fuzzy Syst. 2019, 37, 1299–1309. [Google Scholar] [CrossRef]
- Wang, Y.M.; Chin, K.S.; Poon, G.K.K.; Yang, J.B. Risk evaluation in failure mode and effects analysis using fuzzy weighted geometric mean. Expert Syst. Appl. 2009, 36, 1195–1207. [Google Scholar] [CrossRef]
- Zhang, K.; Zhan, J.M.; Wang, X.Z. TOPSIS-WAA method based on a covering-based fuzzy rough set: An application to rating problem. Inf. Sci. 2020, 539, 397–421. [Google Scholar] [CrossRef]
- Zhang, K.; Dai, J.H. A novel TOPSIS method with decision-theoretic rough fuzzy sets. Inf. Sci. 2022, 608, 1221–1244. [Google Scholar] [CrossRef]
- Song, W.Y.; Ming, X.G.; Wu, Z.Y.; Zhu, B.T. A rough TOPSIS approach for failure mode and effects analysis in uncertain environments. Qual. Reliab. Eng. Int. 2014, 30, 473–486. [Google Scholar] [CrossRef]
- Li, H.; Díaz, H.; Soares, C.G. A failure analysis of floating offshore wind turbines using AHP-FMEA methodology. Ocean Eng. 2021, 234, 109261. [Google Scholar] [CrossRef]
- Zhu, G.N.; Hu, J.; Qi, J.; Gu, C.C.; Peng, Y.H. An integrated AHP and VIKOR for design concept evaluation based on rough number. Adv. Eng. Inform. 2015, 29, 408–418. [Google Scholar] [CrossRef]
- Gupta, G.; Ghasemian, H.; Janvekar, A.A. A novel failure mode effect and criticality analysis (FMECA) using fuzzy rule-based method: A case study of industrial centrifugal pump. Eng. Fail. Anal. 2021, 123, 105305. [Google Scholar] [CrossRef]
- Wen, T.C.; Chung, H.Y.; Chang, K.H.; Li, Z.S. A flexible risk assessment approach integrating subjective and objective weights under uncertainty. Eng. Appl. Artif. Intell. 2021, 103, 104310. [Google Scholar] [CrossRef]
- Fata, C.M.L.; Giallanza, A.; Micale, R.; Scalia, G.L. Improved FMECA for effective risk management decision making by failure modes classification under uncertainty. Eng. Fail. Anal. 2022, 35, 106163. [Google Scholar] [CrossRef]
- Wang, P.; Zhu, Z.Q.; Wang, Y.H. A novel hybrid MCDM model combining the SAW, TOPSIS and GRA methods based on experimental design. Inf. Sci. 2016, 345, 27–45. [Google Scholar] [CrossRef]
- Poongavanam, G.; Sivalingam, V.; Prabakaran, R.; Salman, M.; Kim, S.C. Selection of the best refrigerant for replacing R134a in automobile air conditioning system using different MCDM methods: A comparative study. Case Stud. Therm. Eng. 2021, 27, 101344. [Google Scholar] [CrossRef]
- Luo, Z.Q. Maintenance Strategy Research and Reliability Evaluation for Fully Automatic Coupler Draft Gear of EMU. Master’s Thesis, Northeastern University, Shenyang, China, 2023. (In Chinese). [Google Scholar]
- Zadeh, L.A. Fuzzy Sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Bouchet, A.; Sesma-Sara, M.; Ochoa, G.; Bustince, H.; Montes, S.; Díaz, I. Measures of embedding for interval-valued fuzzy sets. Fuzzy Sets Syst. 2023, 467, 108505. [Google Scholar] [CrossRef]
- Buffa, P.; Giardina, M.; Prete, G.; Ruvo, L.D. Fuzzy FMECA analysis of radioactive gas recovery system in the SPES experimental facility. Nucl. Eng. Technol. 2021, 53, 1464–1478. [Google Scholar] [CrossRef]
- Pourabdollah, A.; Mendel, J.M.; John, R.I. Alpha-cut representation used for defuzzification in rule-based systems. Fuzzy Sets Syst. 2020, 399, 110–132. [Google Scholar] [CrossRef]
- Zhai, L.Y.; Khoo, L.P.; Zhong, Z.W. A rough set based QFD approach to the management of imprecise design information in product development. Adv. Eng. Inform. 2009, 23, 222–228. [Google Scholar] [CrossRef]
- Li, Z.; Luo, Z.J.; Wang, Y.; Fan, G.Y.; Zhang, J.M. Suitability evaluation system for the shallow geothermal energy implementation in region by Entropy Weight Method and TOPSIS method. Renew. Energy 2022, 184, 564–576. [Google Scholar] [CrossRef]
- Ba, D.J.; Chen, G.W.; Li, P. Application of LS-PCP model based on EWM in predicting settlement of high-speed railway roadbed. J. Infrastruct. Intell. Resil. 2023, 2, 100037. [Google Scholar] [CrossRef]
- Saxena, P.; Kumar, V.; Ram, M. A novel CRITIC-TOPSIS approach for optimal selection of software reliability growth model (SRGM). Qual. Reliab. Eng. Int. 2022, 38, 2501–2520. [Google Scholar] [CrossRef]
- Atenidegbe, O.F.; Mogaji, K.A. Modeling assessment of groundwater vulnerability to contamination risk in a typical basement terrain using TOPSIS-entropy developed vulnerability data mining technique. Heliyon 2023, 9, e18371. [Google Scholar] [CrossRef] [PubMed]
- Yeo, S.; Jeong, B.; Lee, W.J. Improved formal safety assessment methodology using fuzzy TOPSIS for LPG-fueled marine engine system. Ocean. Eng. 2023, 269, 113536. [Google Scholar] [CrossRef]
- Javed, S.A.; Gunasekaran, A.; Mahmoudi, A. DGRA: Multi-sourcing and supplier classification through dynamic grey relational analysis method. Comput. Ind. Eng. 2022, 173, 108674. [Google Scholar] [CrossRef]
- Deng, J.L. Control problems of grey systems. Syst. Control Lett. 1982, 1, 288–294. [Google Scholar] [CrossRef]
Scale | Description | Comment |
---|---|---|
1 | aj and ag are equally important | agj and ajg are reciprocal of each other |
3 | aj is weakly more important than ag | |
5 | aj is strongly more important than ag | |
7 | aj is very strongly more important than ag | |
9 | aj is absolutely more important than ag | |
2, 4, 6, 8 | represent the median of adjacent judgments |
Subsystem | Component | Code | Failure Mode | Effect | Failure Rate/% |
---|---|---|---|---|---|
Coupling system | Trigger composition | 0101A | Deflection of guide rod | Affecting task completion | 3.50 |
0101B | Spring failure and force drop | 1.60 | |||
Coupler tongue | 0102A | Cracks on locating pin rod | Affecting automatic coupling and decoupling | 19.00 | |
Coupler body | 0103A | Surface linear defect | Fault symptoms | 5.50 | |
Uncoupling cylinder | 0104A | Air leakage of cylinder | Mechanical coupler uncoupling failure | 0.07 | |
Coupler tongue extension spring | 0105A | Spring failure and force drop | Mechanical coupler coupling failure | 0.70 | |
Connecting snap ring | 0106A | Cracks on upper connecting snap ring | Fracture, leading to decoupling of EMU | 1.10 | |
Electric coupler and pusher system | Contact | 0201A | Corrosion | Electrical coupling failure | 0.58 |
Sealing ring of contact elements | 0202A | Cracking and aging | Electrical coupling failure | 5.17 | |
0202B | Cracking and aging | Short circuit and burning loss of circuit | 5.17 | ||
Rubber sealing ring of coupler head | 0203A | Cracking and aging | Short circuit and burning loss of circuit | 4.67 | |
Shaft of tension spring | 0204A | Deformation | Electrical coupling failure | 1.50 | |
Electric coupler cover | 0205A | Damage of moving components of the opening and closing structure | Electrical coupling failure | 2.50 | |
Bearing of protective cover | 0206A | Deformation and damage | Electrical coupling failure | 5.00 | |
Spring of protective cover | 0207A | Deformation and damage | Electrical coupling failure | 1.00 | |
Shaft sleeve of protective cover | 0208A | Oil loss | Electrical coupling failure | 8.10 | |
Push cylinder | 0209A | Air leakage at rod end | Electrical coupling failure | 40.00 | |
Fastener groups | 0210A | Shedding and fracture | Electrical coupling failure | 5.40 | |
Air circuit system | Mechanical valves | 0301A | Valve element rusted and unable to move | Electrical coupling failure | 3.50 |
Pipeline | 0302A | Air leakage | Functional failure | 0.14 | |
Brake pipeline valve | 0303A | Ventilation leakage | Functional failure | 7.50 | |
Main pipeline valve | 0304A | Ventilation leakage | Functional failure | 7.50 | |
Uncoupling pipeline valve | 0305A | Ventilation leakage | Functional failure | 7.50 | |
Electrical components system | Magnetic proximity switch | 0401A | Damage | Affecting task completion | 0.35 |
Single electric solenoid valve | 0402A | Not exceeding the standard leakage | Unlocking failure of locking device | 9.21 | |
Double electric solenoid valve | 0403A | Exceeding the standard leakage | Failure of extension and contraction | 53.35 | |
Limit switch | 0404A | Damage of gold-plated contacts | Affecting task completion | 0.14 | |
Crushing devices of expansion and buffering | Rubber ring | 0501A | Cracks and damages on the surface | Fault symptoms | 17.00 |
Crushing pipeline | 0502A | Severe crushing | Decrease in overload protection capacity | 1.00 | |
Telescopic cylinder | 0503A | Deformation of cylinder barrel | Fault symptoms | 0.42 | |
Unlock cylinder | 0504A | Sliding thread of cylinder barrel thread | Loss of action | 1.49 | |
0504B | Corrosion of piston assembly | Loss of action | 0.20 | ||
0504C | Collision and deformation of inner wall of cylinder barrel | Fault symptoms | 0.42 | ||
0504D | Scratches on inner wall of cylinder barrel | Fault symptoms | 0.86 | ||
Alignment devices of installation of hanging | Cam disc | 0601A | Wear | Position offset | 23.50 |
Bracket | 0602A | Surface crack | Fault symptoms | 18.50 | |
Rubber support | 0603A | Too-small electrical impedance | Fault symptoms | 100.00 | |
Installation frame | 0604A | Linear surface defect | Fault symptoms | 7.00 | |
0604B | Poor size and appearance | Fault symptoms | 0.50 | ||
Rubber bearing | 0605A | Too-small stiffness | Noise during operation | 42.86 | |
0605B | Too-small electrical impedance | Fault symptoms | 100.00 | ||
Master pin | 0606A | Poor Teflon coating on the surface | Fault symptoms | 100.00 |
Linguistic Variable (Level) | O | S | D | M |
---|---|---|---|---|
Very low (VL) | Almost no occurrence p ≤ 0.1% | Almost no damage | Very easy to find and identify | Very easy to maintain |
Low (L) | Rare occurrence 0.1%< p ≤ 1.0% | Mild damage | Easy to find and identify | Easy to maintain |
Medium (M) | Occasional occurrence 1.0% < p ≤ 10% | Moderate damage | Generally easy to find and identify | Generally easy to maintain |
High (H) | Sometimes occurrence 10% < p ≤ 20% | Serious damage | Difficult to find and identify | Difficult to maintain |
Very high (VH) | Constant occurrence p > 20% | Significant damage | Very difficult to find and identify | Very difficult to maintain |
Level | Fuzzy Number | Defuzzification Number |
---|---|---|
VL | (0, 0, 1, 3) | 0.8333 |
L | (1, 3, 5) | 3 |
M | (3, 5, 7) | 5 |
H | (5, 7, 9) | 7 |
VL | (7, 9, 10, 10) | 9.167 |
Ideal Solution | S | O | D | M |
---|---|---|---|---|
PIS | 0.0736 | 0.0239 | 0.0052 | 0.0163 |
NIS | 1 | 0.2902 | 0.0771 | 0.1709 |
No. | Code | δ | Ranking of δ | Values of RPN [49] |
---|---|---|---|---|
1 | 0101A | 0.42654 | 33 | 160 |
2 | 0101B | 0.49024 | 23 | 240 |
3 | 0102A | 0.67814 | 2 | 3136 |
4 | 0103A | 0.53940 | 9 | 640 |
5 | 0104A | 0.50083 | 22 | 144 |
6 | 0105A | 0.52959 | 15 | 240 |
7 | 0106A | 0.70048 | 1 | 3600 |
8 | 0201A | 0.46459 | 28 | 72 |
9 | 0202A | 0.48204 | 24 | 120 |
10 | 0202B | 0.53480 | 11 | 150 |
11 | 0203A | 0.51223 | 20 | 120 |
12 | 0204A | 0.44018 | 31 | 48 |
13 | 0205A | 0.38827 | 38 | 16 |
14 | 0206A | 0.44224 | 30 | 60 |
15 | 0207A | 0.42651 | 34 | 54 |
16 | 0208A | 0.41521 | 37 | 48 |
17 | 0209A | 0.56608 | 7 | 1890 |
18 | 0210A | 0.53118 | 14 | 50 |
19 | 0301A | 0.57931 | 5 | 750 |
20 | 0302A | 0.47635 | 25 | 120 |
21 | 0303A | 0.57855 | 6 | 720 |
22 | 0304A | 0.54776 | 8 | 720 |
23 | 0305A | 0.52488 | 18 | 576 |
24 | 0401A | 0.52623 | 17 | 90 |
25 | 0402A | 0.44927 | 29 | 144 |
26 | 0403A | 0.52249 | 19 | 360 |
27 | 0404A | 0.53321 | 12 | 250 |
28 | 0501A | 0.62189 | 4 | 3456 |
29 | 0502A | 0.64926 | 3 | 504 |
30 | 0503A | 0.35910 | 41 | 4 |
31 | 0504A | 0.52664 | 16 | 288 |
32 | 0504B | 0.47513 | 26 | 90 |
33 | 0504C | 0.36888 | 40 | 32 |
34 | 0504D | 0.33977 | 42 | 75 |
35 | 0601A | 0.53185 | 13 | 1134 |
36 | 0602A | 0.47498 | 27 | 384 |
37 | 0603A | 0.42313 | 35 | 240 |
38 | 0604A | 0.53660 | 10 | 864 |
39 | 0604B | 0.37598 | 39 | 20 |
40 | 0605A | 0.50144 | 21 | 756 |
41 | 0605B | 0.43281 | 32 | 490 |
42 | 0606A | 0.42096 | 36 | 160 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Y.; Luo, Z.; Liu, Z.; Liu, Z. Risk Assessment Analysis of Multiple Failure Modes Using the Fuzzy Rough FMECA Method: A Case of FACDG. Mathematics 2023, 11, 3459. https://doi.org/10.3390/math11163459
Yan Y, Luo Z, Liu Z, Liu Z. Risk Assessment Analysis of Multiple Failure Modes Using the Fuzzy Rough FMECA Method: A Case of FACDG. Mathematics. 2023; 11(16):3459. https://doi.org/10.3390/math11163459
Chicago/Turabian StyleYan, Yutao, Zhongqiang Luo, Zhenyu Liu, and Zhibo Liu. 2023. "Risk Assessment Analysis of Multiple Failure Modes Using the Fuzzy Rough FMECA Method: A Case of FACDG" Mathematics 11, no. 16: 3459. https://doi.org/10.3390/math11163459
APA StyleYan, Y., Luo, Z., Liu, Z., & Liu, Z. (2023). Risk Assessment Analysis of Multiple Failure Modes Using the Fuzzy Rough FMECA Method: A Case of FACDG. Mathematics, 11(16), 3459. https://doi.org/10.3390/math11163459