GA-KELM: Genetic-Algorithm-Improved Kernel Extreme Learning Machine for Traffic Flow Forecasting
Abstract
:1. Introduction
- Firstly, we propose a hybrid learning model, termed genetic-algorithm-improved kernel extreme learning machine (GA-KELM), avoiding manual traversal of all possible parameters.
- Secondly, we unleashed the potential prediction accuracy and generalization performance of the kernel extreme learning machine through genetic algorithms.
- Thirdly, this model retains the character of kernel extreme learning machine that has the advantages of rapid learning and a robust generalization ability to deal with non-linear traffic flow through an end-to-end mechanism.
- Fourthly, we have carried out sufficient experiments on GA-KELM and several state-of-the-art traffic flow prediction models on the Amsterdam highway dataset and the England M25 highway dataset and proved the superior performance of GA-KELM.
2. Materials and Methods
2.1. Kernel Extreme Learning Machine
2.2. Genetic Algorithm
- Step 1. Specify the quantity of iterations and chromosomes and the values of crossover rate and mutation rate.
- Step 2. Generate the chromosomes of the first population P, where the population is the collection of all chromosomes (individuals), is the ith chromosome, whose value is expressed by binary sequences, and q is the number of individuals. A chromosome is formed by the combination of and .
- Step 3. Map all the individuals in population P to a certain range set according to the actual problem.
- Step 4. Calculate the fitness value of each individual by means of the objective function.
- Step 5. The population P is selected according to the fitness value to reproduce. The greater the individual’s fitness value, the higher the probability of being selected.
- Step 6. The selected population P breeds offspring and has a certain probability of crossing and mutation. m and c stand for the values of the mutation and crossing rates, respectively.
- Step 7. Conduct Step 4 to 6 until the iteration number n is met.
2.3. GA-KELM for Traffic Flow Forecasting
3. Experiments
3.1. Datasets Description
3.2. Evaluation Criteria
3.3. Experimental Setup
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, M.; Liu, Z. Traffic Flow Prediction Based on Dynamic Graph Spatial-Temporal Neural Network. Mathematics 2023, 11, 2528. [Google Scholar] [CrossRef]
- Zheng, S.; Zhang, S.; Song, Y.; Lin, Z.; Jiang, D.; Zhou, T. A Noise-Immune Boosting Framework for Short-Term Traffic Flow Forecasting. Complexity 2021, 2021, 5582974. [Google Scholar] [CrossRef]
- Liu, H.W.; Wang, Y.T.; Wang, X.K.; Liu, Y.; Liu, Y.; Zhang, X.Y.; Xiao, F. Cloud Model-Based Fuzzy Inference System for Short-Term Traffic Flow Prediction. Mathematics 2023, 11, 2509. [Google Scholar] [CrossRef]
- Guo, J.; Huang, W.; Williams, B.M. Adaptive Kalman filter approach for stochastic short-term traffic flow rate prediction and uncertainty quantification. Transp. Res. Part C 2014, 43, 50–64. [Google Scholar] [CrossRef]
- Zhou, T.; Jiang, D.; Lin, Z.; Han, G.; Xu, X.; Qin, J. Hybrid dual Kalman filtering model for short-term traffic flow forecasting. IET Intell. Transp. Syst. 2019, 13, 1023–1032. [Google Scholar] [CrossRef]
- Cai, L.; Zhang, Z.; Yang, J.; Yu, Y.; Qin, J. A noise-immune Kalman filter for short-term traffic flow forecasting. Phys. Stat. Mech. Its Appl. 2019, 536, 122601. [Google Scholar] [CrossRef]
- Mai, T.; Ghosh, B.; Wilson, S. Multivariate Short-Term Traffic Flow Forecasting Using Bayesian Vector Autoregressive Moving Average Model. In Proceedings of the Transportation Research Board Meeting, Washington, DC, USA, 22–26 January 2012. [Google Scholar]
- Poncela, P. Time series analysis by state space methods: J. Durbin and S.J. Koopman, Oxford Statistical Series 24, 2001, Oxford University Press, ISBN 0-19-852354-8, 254 pages, price: £36.00 (hardback). Int. J. Forecast. 2004, 20, 139–141. [Google Scholar] [CrossRef]
- Ghosh, B.; Basu, B.; O’Mahony, M. Multivariate Short-Term Traffic Flow Forecasting Using Time-Series Analysis. IEEE Trans. Intell. Transp. Syst. 2009, 10, 246–254. [Google Scholar] [CrossRef]
- Min, W.; Wynter, L. Real-time road traffic prediction with spatio-temporal correlations. Transp. Res. Part C: Emerg. Technol. 2011, 19, 606–616. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Haghani, A. A hybrid short-term traffic flow forecasting method based on spectral analysis and statistical volatility model. Transp. Res. Part C Emerg. Technol. 2014, 43, 65–78. [Google Scholar] [CrossRef]
- Tchrakian, T.T. Real-Time Traffic Flow Forecasting Using Spectral Analysis. IEEE Trans. Intell. Transp. Syst. 2012, 13, 519–526. [Google Scholar] [CrossRef]
- Moayedi, H.Z. Arima model for network traffic prediction and anomaly detection. In Proceedings of the International Symposium on Information Technology, Kuala Lumpur, Malaysia, 26–29 August 2008. [Google Scholar]
- Comert, G.; Bezuglov, A. An Online Change-Point-Based Model for Traffic Parameter Prediction. IEEE Trans. Intell. Transp. Syst. 2013, 14, 1360–1369. [Google Scholar] [CrossRef]
- Hong, W.C.; Pai, P.F.; Yang, S.L.; Theng, R. Highway traffic forecasting by support vector regression model with tabu search algorithms. In Proceedings of the 2006 IEEE International Joint Conference on Neural Network Proceedings, Vancouver, BC, Canada, 16–21 July 2006. [Google Scholar]
- Cai, L.; Chen, Q.; Cai, W.; Xu, X.; Zhou, T.; Qin, J. SVRGSA: A hybrid learning based model for short-term traffic flow forecasting. Intell. Transp. Syst. IET 2019, 13, 1348–1355. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhirui, Y.E. Short-Term Traffic Flow Forecasting Using Fuzzy Logic System Methods. J. Intell. Transp. Syst. 2008, 12, 102–112. [Google Scholar] [CrossRef]
- Arqub, O.A.; Al-Smadi, M.; Momani, S.; Hayat, T. Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems. Soft Comput. 2016, 21, 7191–7206. [Google Scholar] [CrossRef]
- Zhu, J.Z.; Cao, J.X.; Zhu, Y. Traffic volume forecasting based on radial basis function neural network with the consideration of traffic flows at the adjacent intersections. Transp. Res. Part C Emerg. Technol. 2014, 47, 139–154. [Google Scholar] [CrossRef]
- Liu, H.; Zuylen, H.; Lint, H.V.; Salomons, M. Predicting Urban Arterial Travel Time with State-Space Neural Networks and Kalman Filters. Transp. Res. Rec. J. Transp. Res. Board 2006, 1968, 99–108. [Google Scholar] [CrossRef]
- Li, L.; Qu, X.; Zhang, J.; Wang, Y.; Ran, B. Traffic speed prediction for intelligent transportation system based on a deep feature fusion model. J. Intell. Transp. Syst. 2019, 23, 605–616. [Google Scholar] [CrossRef]
- Cai, W.; Yang, J.; Yu, Y.; Song, Y.; Qin, J. PSO-ELM: A Hybrid Learning Model for Short-Term Traffic Flow Forecasting. IEEE Access 2020, 8, 6505–6514. [Google Scholar] [CrossRef]
- Zheng, Z.; Su, D. Short-term traffic volume forecasting: A k-nearest neighbor approach enhanced by constrained linearly sewing principle component algorithm. Transp. Res. Part Emerg. Technol. 2014, 43, 143–157. [Google Scholar] [CrossRef]
- Cai, L.; Yu, Y.; Zhang, S.; Song, Y.; Zhou, T. A Sample-rebalanced Outlier-rejected k-nearest Neighbour Regression Model for Short-Term Traffic Flow Forecasting. IEEE Access 2020, 8, 22686–22696. [Google Scholar] [CrossRef]
- Huang, W.; Song, G.; Hong, H.; Xie, K. Deep Architecture for Traffic Flow Prediction: Deep Belief Networks With Multitask Learning. IEEE Trans. Intell. Transp. Syst. 2014, 15, 2191–2201. [Google Scholar] [CrossRef]
- Lv, Y.; Duan, Y.; Kang, W.; Li, Z.; Wang, F.Y. Traffic Flow Prediction With Big Data: A Deep Learning Approach. IEEE Trans. Intell. Transp. Syst. 2015, 16, 865–873. [Google Scholar] [CrossRef]
- Zhou, T.; Han, G.; Xu, X.; Han, C.; Huang, Y.; Qin, J. A Learning-Based Multimodel Integrated Framework for Dynamic Traffic Flow Forecasting. Neural Process. Lett. 2018, 49, 407–430. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, C.; Xu, Y.; Xia, L.; Dai, P.; Bo, L.; Zhang, J.; Zheng, Y. Traffic Flow Forecasting with Spatial-Temporal Graph Diffusion Network. Proc. AAAI Conf. Artif. Intell. 2021, 35, 15008–15015. [Google Scholar] [CrossRef]
- Fernández-Navarro, F.; Hervás-Martínez, C.; Sanchez-Monedero, J.; Gutiérrez, P. MELM-GRBF: A modified version of the extreme learning machine for generalized radial basis function neural networks. Neurocomputing 2011, 74, 2502–2510. [Google Scholar] [CrossRef]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
- Cui, Z.; Huang, B.; Dou, H.; Tan, G.; Zheng, S.; Zhou, T. GSA-ELM: A hybrid learning model for short-term traffic flow forecasting. IET Intell. Transp. Syst. 2022, 16, 41–52. [Google Scholar] [CrossRef]
- Xing-Chao, W.; Jian-Ming, H.U.; Wei, L.; Yi, Z. Short-term travel flow prediction method based on FCM-clustering and ELM. J. Cent. South Univ. 2017, 024, 1344–1350. [Google Scholar]
- Wu, K.; Xu, C.; Yan, J.; Wang, F.; Lin, Z.; Zhou, T. Error-distribution-free kernel extreme learning machine for traffic flow forecasting. Eng. Appl. Artif. Intell. 2023, 123, 106411. [Google Scholar] [CrossRef]
- Huang, G.B.; Zhou, H.; Ding, X.; Rui, Z. Extreme Learning Machine for Regression and Multiclass Classification. IEEE Trans. Syst. Man Cybern. Part B 2012, 42, 513–529. [Google Scholar] [CrossRef] [PubMed]
- Shang, Q.; Lin, C.; Yang, Z.; Bing, Q.; Zhou, X. A Hybrid Short-Term Traffic Flow Prediction Model Based on Singular Spectrum Analysis and Kernel Extreme Learning Machine. PLoS ONE 2016, 11, e0161259. [Google Scholar] [CrossRef]
- Hermawanto, D. Genetic Algorithm for Solving Simple Mathematical Equality Problem. arXiv 2017, arXiv:1308.4675. [Google Scholar]
- Godwin Immanuel, D.; Chritober Asir Rajan, C. An Genetic Algorithm approach for reactive power control problem. In Proceedings of the 2013 International Conference on Circuits, Power and Computing Technologies (ICCPCT), Nagercoil, India, 20–21 March 2013; pp. 74–78. [Google Scholar] [CrossRef]
- Wang, Y.; Schuppen, J.; Vrancken, J. Prediction of Traffic Flow at the Boundary of a Motorway Network. IEEE Trans. Intell. Transp. Syst. 2013, 15, 214–227. [Google Scholar] [CrossRef]
- Guo, H.; Xiao, X.; Jeffrey, F. Urban Road Short-term Traffic Flow Forecasting Based on the Delay and Nonlinear Grey Model. J. Transp. Syst. Eng. Inf. Technol. 2013, 13, 60–66. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, Z.; Xie, Y. Short-Term Traffic Volume Forecasting Using Kalman Filter with Discrete Wavelet Decomposition. Comput. Civ. Infrastruct. Eng. 2007, 22, 326–334. [Google Scholar]
- Lippi, M.; Bertini, M.; Frasconi, P. Short-Term Traffic Flow Forecasting: An Experimental Comparison of Time-Series Analysis and Supervised Learning. IEEE Trans. Intell. Transp. Syst. 2013, 14, 871–882. [Google Scholar] [CrossRef]
- Ma, X.; Tao, Z.; Wang, Y.; Yu, H.; Wang, Y. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transp. Res. Part C Emerg. Technol. 2015, 54, 187–197. [Google Scholar] [CrossRef]
- Cai, L.; Lei, M.; Zhang, S.; Yu, Y.; Qin, J. A noise-immune LSTM network for short-term traffic flow forecasting. Chaos 2020, 30, 1–11. [Google Scholar] [CrossRef]
- Zhou, T.; Han, G.; Xu, X.; Lin, Z.; Han, C.; Huang, Y.; Qin, J. δ-agree AdaBoost stacked autoencoder for short-term traffic flow forecasting. Neurocomputing 2017, 247, 31–38. [Google Scholar] [CrossRef]
Models | A1 | A2 | A4 | A8 |
---|---|---|---|---|
ANN | 299.64 | 212.95 | 225.86 | 166.50 |
GM | 347.94 | 261.36 | 275.35 | 189.57 |
SVR | 329.09 | 259.74 | 253.66 | 190.30 |
AR | 301.44 | 214.22 | 226.12 | 166.71 |
KF | 332.03 | 239.87 | 250.51 | 187.48 |
SARIMA | 308.44 | 221.08 | 228.36 | 169.36 |
LSTM | 294.52 | 211.31 | 224.68 | 168.91 |
NiLSTM | 285.54 | 203.69 | 223.72 | 163.25 |
SAE | 295.43 | 209.32 | 226.91 | 167.01 |
ELM | 294.10 | 201.67 | 222.07 | 169.15 |
KELM | 285.86 | 197.79 | 222.34 | 163.70 |
GA-ELM | 291.42 | 211.43 | 228.57 | 169.25 |
GSA-ELM | 287.89 | 203.04 | 221.39 | 163.24 |
GA-KELM | 284.67 |
Models | A1 | A2 | A4 | A8 |
---|---|---|---|---|
ANN | 12.61 | 10.89 | 12.49 | 12.53 |
GM | 12.49 | 10.90 | 13.22 | 12.89 |
SVR | 14.34 | 12.22 | 12.23 | 12.48 |
AR | 13.57 | 11.59 | 12.70 | 12.71 |
KF | 12.46 | 10.72 | 12.62 | 12.63 |
SARIMA | 12.81 | 11.25 | 12.05 | 12.44 |
LSTM | 12.82 | 11.06 | 13.71 | 12.56 |
NiLSTM | 12.00 | 10.14 | 11.57 | |
SAE | 11.92 | 10.23 | 11.87 | 12.03 |
ELM | 11.82 | 10.34 | 12.05 | 12.42 |
KELM | 11.76 | 10.07 | 11.58 | 12.61 |
GA-ELM | 11.86 | 10.30 | 11.87 | 12.26 |
GSA-ELM | 11.69 | 10.25 | 11.72 | 12.05 |
GA-KELM | 11.67 | 12.59 |
Different Sample Sizes | A1 (Ours) | A1 (KELM) | A1* (Ours) | A2 (Ours) | A2 (KELM) | A2* (Ours) | A4 (Ours) | A4 (KELM) | A4* (Ours) | A8 (Ours) | A8 (KELM) | A8* (Ours) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
five days | 291.87 | 295.85 | 305.02 | 208.28 | 214.35 | 213.53 | 225.81 | 233.92 | 232.14 | 169.82 | 173.62 | 166.45 |
one week | 288.22 | 294.28 | 306.05 | 200.71 | 207.16 | 208.29 | 224.74 | 229.87 | 231.25 | 168.85 | 173.07 | 167.13 |
two weeks | 288.01 | 293.97 | 298.93 | 198.01 | 205.89 | 205.11 | 223.61 | 227.81 | 226.67 | 165.46 | 168.99 | 166.43 |
four weeks | 284.67 |
Different Sample Sizes | A1 (Ours) | A1 (KELM) | A1* (Ours) | A2 (Ours) | A2 (KELM) | A2* (Ours) | A4 (Ours) | A4 (KELM) | A4* (Ours) | A8 (Ours) | A8 (KELM) | A8* (Ours) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
five days | 12.39 | 13.21 | 13.54 | 11.21 | 12.68 | 13.13 | 12.17 | 13.36 | 12.46 | 13.01 | 14.06 | 13.41 |
one week | 11.78 | 12.91 | 13.53 | 10.05 | 10.84 | 12.18 | 12.26 | 13.34 | 12.36 | 13.13 | 14.36 | 13.20 |
two weeks | 11.91 | 12.74 | 13.02 | 10.13 | 10.73 | 11.44 | 11.88 | 12.89 | 11.94 | 12.64 | 13.32 | 12.87 |
four weeks | 11.67 |
Models | D1 | D2 | D3 | D4 | D5 | D6 | P |
---|---|---|---|---|---|---|---|
ELM | 161.49 | 116.81 | 124.22 | 51.52 | 19.44 | 149.33 | 29.17 |
GA-ELM | 101.31 | 110.74 | 118.90 | 48.99 | 18.55 | 145.18 | 28.18 |
GSA-ELM | 97.47 | 108.03 | 113.20 | 48.87 | 18.45 | 140.22 | 26.02 |
KELM | 94.78 | 106.49 | 113.20 | 47.81 | 17.55 | 138.29 | 25.47 |
GA-KELM | 94.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chai, W.; Zheng, Y.; Tian, L.; Qin, J.; Zhou, T. GA-KELM: Genetic-Algorithm-Improved Kernel Extreme Learning Machine for Traffic Flow Forecasting. Mathematics 2023, 11, 3574. https://doi.org/10.3390/math11163574
Chai W, Zheng Y, Tian L, Qin J, Zhou T. GA-KELM: Genetic-Algorithm-Improved Kernel Extreme Learning Machine for Traffic Flow Forecasting. Mathematics. 2023; 11(16):3574. https://doi.org/10.3390/math11163574
Chicago/Turabian StyleChai, Wenguang, Yuexin Zheng, Lin Tian, Jing Qin, and Teng Zhou. 2023. "GA-KELM: Genetic-Algorithm-Improved Kernel Extreme Learning Machine for Traffic Flow Forecasting" Mathematics 11, no. 16: 3574. https://doi.org/10.3390/math11163574
APA StyleChai, W., Zheng, Y., Tian, L., Qin, J., & Zhou, T. (2023). GA-KELM: Genetic-Algorithm-Improved Kernel Extreme Learning Machine for Traffic Flow Forecasting. Mathematics, 11(16), 3574. https://doi.org/10.3390/math11163574