Novel Integer Shmaliy Transform and New Multiparametric Piecewise Linear Chaotic Map for Joint Lossless Compression and Encryption of Medical Images in IoMTs
Abstract
:1. Introduction
- A new reversible integer discrete Shmaliy transform (IDST) is proposed for integer-to-integer mapping in signal and image processing.
- A new 1D chaotic map called M-PWLCM incorporating eight control parameters defined over an infinite range is proposed.
- IDST and M-PWLCM are used in a proposed lossless compression–encryption scheme for IoMTs.
- The proposed lossless scheme provides an acceptable compression ratio with a high security level.
- To the best of our knowledge, the proposed framework is the first attempt to use reversible integer transforms in joint compression and encryption of medical images.
- Simulations and comparisons are provided to demonstrate the suitability of our scheme for IoMTs.
2. Related Work with Discussion
3. Preliminaries
3.1. Discrete Shmaliy Polynomials
3.2. Discrete Shmaliy Transform
4. Proposed Integer Shmaliy Transform
- . That is, is an orthogonal matrix with is the transpose symbol and I denotes the identity matrix of size .
- The transpose of equals its inverse: . That is, is invertible.
- determinant is equals to 1: .
- All minors of the lead sub-matrices of are 1 s.
5. Proposed Multiparametric Piecewise Linear Chaotic Map
5.1. Traditional Piecewise Linear Chaotic Map
5.2. Proposed M-PWLCM and Its Analysis
6. Proposed Lossless Compression–Encryption Scheme for IoMTs
6.1. Pre-Processing
6.2. Computation of the Forward IDST
6.3. Huffman Coding
6.4. Bit Stream Grouping and Coding
6.5. Compressed Image Encryption
7. Simulation Results
7.1. Reconstruction Error Analysis
7.2. Lossless Compression Performance Analysis
7.3. Security Key Space Analysis
7.4. Histogram Analysis
7.5. Correlation Analysis
7.6. Key Sensitivity Analysis
7.7. Differential Attack Analysis
- Set a constant of low value: .
- Select a key parameter (e.g., ) and add to this parameter ().
- Use the proposed scheme for compression–encryption of the first medical image in the dataset by using the user-selected security key containing the modified parameter ().
- Update element by .
- Apply compression–encryption to the second medical image in the dataset, and so on until the proposed scheme is applied to the entire dataset.
7.8. Runtime Analysis
7.9. Comparison Analysis
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dwivedi, R.; Mehrotra, D.; Chandra, S. Potential of Internet of Medical Things (IoMT) applications in building a smart healthcare system: A systematic review. J. Oral Biol. Craniofacial Res. 2022, 12, 302–318. [Google Scholar] [CrossRef]
- Yu, W.; Liang, F.; He, X.; Hatcher, W.G.; Lu, C.; Lin, J.; Yang, X. A survey on the edge computing for the Internet of Things. IEEE Access 2017, 6, 6900–6919. [Google Scholar] [CrossRef]
- Sun, Y.; Lo, F.P.W.; Lo, B. Security and privacy for the internet of medical things enabled healthcare systems: A survey. IEEE Access 2019, 7, 183339–183355. [Google Scholar] [CrossRef]
- Thomasian, N.M.; Adashi, E.Y. Cybersecurity in the internet of medical things. Health Policy Technol. 2021, 10, 100549. [Google Scholar] [CrossRef]
- Zuo, Z.; Lan, X.; Deng, L.; Yao, S.; Wang, X. An improved medical image compression technique with lossless region of interest. Optik 2015, 126, 2825–2831. [Google Scholar] [CrossRef]
- Mouradian, C.; Naboulsi, D.; Yangui, S.; Glitho, R.H.; Morrow, M.J.; Polakos, P.A. A comprehensive survey on fog computing: State-of-the-art and research challenges. IEEE Commun. Surv. Tutorials 2017, 20, 416–464. [Google Scholar] [CrossRef]
- Daoui, A.; Yamni, M.; Karmouni, H.; Sayyouri, M.; Qjidaa, H. Efficient reconstruction and compression of large size ECG signal by Tchebichef moments. In Proceedings of the 2020 International Conference on Intelligent Systems and Computer Vision (ISCV), Fez, Morocco, 9–11 June 2020; pp. 1–6. [Google Scholar]
- Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R. Towards insighting cybersecurity for healthcare domains: A comprehensive review of recent practices and trends. Cyber Secur. Appl. 2023, 1, 100016. [Google Scholar] [CrossRef]
- Raja, S. Joint medical image compression–encryption in the cloud using multiscale transform-based image compression encoding techniques. Sādhanā 2019, 44, 28. [Google Scholar] [CrossRef]
- Hajjaji, M.A.; Dridi, M.; Mtibaa, A. A medical image crypto-compression algorithm based on neural network and PWLCM. Multimed. Tools Appl. 2019, 78, 14379–14396. [Google Scholar] [CrossRef]
- Sutherland, J.; Belec, J.; Sheikh, A.; Chepelev, L.; Althobaity, W.; Chow, B.J.; Mitsouras, D.; Christensen, A.; Rybicki, F.J.; La Russa, D.J. Applying modern virtual and augmented reality technologies to medical images and models. J. Digit. Imaging 2019, 32, 38–53. [Google Scholar] [CrossRef]
- Devaraj, S.J. Emerging paradigms in transform-based medical image compression for telemedicine environment. In Telemedicine Technologies; Elsevier: Amsterdam, The Netherlands, 2019; pp. 15–29. [Google Scholar]
- Li, Z.; Ramos, A.; Li, Z.; Osborn, M.L.; Zaid, W.; Li, X.; Li, Y.; Xu, J. Nearly-lossless-to-lossy medical image compression by the optimized JPEGXT and JPEG algorithms through the anatomical regions of interest. Biomed. Signal Process. Control 2023, 83, 104711. [Google Scholar] [CrossRef]
- Ghazvinian Zanjani, F.; Zinger, S.; Piepers, B.; Mahmoudpour, S.; Schelkens, P.; de With, P.H. Impact of JPEG 2000 compression on deep convolutional neural networks for metastatic cancer detection in histopathological images. J. Med. Imaging 2019, 6, 027501. [Google Scholar] [CrossRef]
- Brahimi, T.; Khelifi, F.; Kacha, A. An efficient JPEG-2000 based multimodal compression scheme. Multimed. Tools Appl. 2021, 80, 21241–21260. [Google Scholar] [CrossRef]
- Liu, F.; Hernandez-Cabronero, M.; Sanchez, V.; Marcellin, M.W.; Bilgin, A. The current role of image compression standards in medical imaging. Information 2017, 8, 131. [Google Scholar] [CrossRef]
- Anastassopoulos, G.K.; Skodras, A. JPEG2000 ROI coding in medical imaging applications. In Proceedings of the IASTED International Conference on Visualisation, Imaging and Image Processing (VIIP2002), Marbella, Spain, 9–12 September 2002; pp. 783–788. [Google Scholar]
- Li, Z.; Ramos, A.; Li, Z.; Osborn, M.L.; Li, X.; Li, Y.; Yao, S.; Xu, J. An optimized JPEG-XT-based algorithm for the lossy and lossless compression of 16-bit depth medical image. Biomed. Signal Process. Control 2021, 64, 102306. [Google Scholar] [CrossRef]
- Lalitha, Y.; Latte, M. Lossless and lossy compression of DICOM images with scalable ROI. Int. J. Comput. Sci. Netw. Secur. 2010, 10, 276–281. [Google Scholar]
- Weinberger, M.J.; Seroussi, G.; Sapiro, G. The LOCO-I lossless image compression algorithm: Principles and standardization into JPEG-LS. IEEE Trans. Image Process. 2000, 9, 1309–1324. [Google Scholar] [CrossRef]
- Wu, X.; Memon, N. CALIC-a context based adaptive lossless image codec. In Proceedings of the 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings, Atlanta, GA, USA, 9 May 1996; Volume 4, pp. 1890–1893. [Google Scholar]
- Xiao, B.; Lu, G.; Zhang, Y.; Li, W.; Wang, G. Lossless image compression based on integer Discrete Tchebichef Transform. Neurocomputing 2016, 214, 587–593. [Google Scholar] [CrossRef]
- Suzuki, T.; Ikehara, M. Integer DCT based on direct-lifting of DCT-IDCT for lossless-to-lossy image coding. IEEE Trans. Image Process. 2010, 19, 2958–2965. [Google Scholar] [CrossRef]
- Chen, Y.; Hao, P. Integer reversible transformation to make JPEG lossless. In Proceedings of the 7th International Conference on Signal Processing, Beijing, China, 31 August–4 September 2004; Volume 1, pp. 835–838. [Google Scholar]
- Chen, Y.J.; Oraintara, S.; Nguyen, T. Video compression using integer DCT. In Proceedings of the 2000 International Conference on Image Processing (Cat. No. 00CH37101), Vancouver, BC, Canada, 10–13 September 2000; Volume 2, pp. 844–845. [Google Scholar]
- Dai, H.N.; Wu, Y.; Wang, H.; Imran, M.; Haider, N. Blockchain-empowered edge intelligence for internet of medical things against COVID-19. IEEE Internet Things Mag. 2021, 4, 34–39. [Google Scholar] [CrossRef]
- Daoui, A.; Yamni, M.; Karmouni, H.; Sayyouri, M.; Qjidaa, H.; Motahhir, S.; Jamil, O.; El-Shafai, W.; Algarni, A.D.; Soliman, N.F.; et al. Efficient Biomedical Signal Security Algorithm for Smart Internet of Medical Things (IoMTs) Applications. Electronics 2022, 11, 3867. [Google Scholar] [CrossRef]
- Pirbhulal, S.; Samuel, O.W.; Wu, W.; Sangaiah, A.K.; Li, G. A joint resource-aware and medical data security framework for wearable healthcare systems. Future Gener. Comput. Syst. 2019, 95, 382–391. [Google Scholar] [CrossRef]
- Sammoud, A.; Chalouf, M.A.; Hamdi, O.; Montavont, N.; Bouallegue, A. A new biometrics-based key establishment protocol in WBAN: Energy efficiency and security robustness analysis. Comput. Secur. 2020, 96, 101838. [Google Scholar] [CrossRef]
- Ogundokun, R.O.; Awotunde, J.B.; Adeniyi, E.A.; Ayo, F.E. Crypto-Stegno based model for securing medical information on IOMT platform. Multimed. Tools Appl. 2021, 80, 31705–31727. [Google Scholar] [CrossRef]
- Abdulbaqi, A.S.; Obaid, A.J.; Abdulameer, M.H. Smartphone-based ECG signals encryption for transmission and analyzing via IoMTs. J. Discret. Math. Sci. Cryptogr. 2021, 24, 1979–1988. [Google Scholar] [CrossRef]
- Laiphrakpam, D.S.; Thingbaijam, R.; Singh, K.M.; Al Awida, M. Encrypting multiple images with an enhanced chaotic map. IEEE Access 2022, 10, 87844–87859. [Google Scholar] [CrossRef]
- Daoui, A.; Yamni, M.; Chelloug, S.A.; Wani, M.A.; El-Latif, A.A.A. Efficient image encryption scheme using novel 1D multiparametric dynamical tent map and parallel computing. Mathematics 2023, 11, 1589. [Google Scholar] [CrossRef]
- Cao, W.; Cai, H.; Hua, Z. n-Dimensional Chaotic Map with application in secure communication. Chaos Solitons Fractals 2022, 163, 112519. [Google Scholar] [CrossRef]
- Erkan, U.; Toktas, A.; Lai, Q. 2D hyperchaotic system based on Schaffer function for image encryption. Expert Syst. Appl. 2023, 213, 119076. [Google Scholar] [CrossRef]
- Liu, L.; Wang, J. A cluster of 1D quadratic chaotic map and its applications in image encryption. Math. Comput. Simul. 2023, 204, 89–114. [Google Scholar] [CrossRef]
- Selvi, C.T.; Amudha, J.; Sudhakar, R. Medical image encryption and compression by adaptive sigma filterized synorr certificateless signcryptive Levenshtein entropy-coding-based deep neural learning. Multimed. Syst. 2021, 27, 1059–1074. [Google Scholar] [CrossRef]
- Zhang, L.B.; Zhu, Z.L.; Yang, B.Q.; Liu, W.Y.; Zhu, H.F.; Zou, M.Y. Medical image encryption and compression scheme using compressive sensing and pixel swapping based permutation approach. Math. Probl. Eng. 2015, 2015, 940638. [Google Scholar] [CrossRef]
- Selvi, C.T.; Amudha, J.; Sudhakar, R. A modified salp swarm algorithm (SSA) combined with a chaotic coupled map lattices (CML) approach for the secured encryption and compression of medical images during data transmission. Biomed. Signal Process. Control 2021, 66, 102465. [Google Scholar] [CrossRef]
- Wang, L.; Li, L.; Li, J.; Li, J.; Gupta, B.B.; Liu, X. Compressive sensing of medical images with confidentially homomorphic aggregations. IEEE Internet Things J. 2018, 6, 1402–1409. [Google Scholar] [CrossRef]
- González, G.; Nava, R.; Escalante-Ramírez, B. A comparative study on discrete Shmaliy moments and their texture-based applications. Math. Probl. Eng. 2018, 2018, 1673283. [Google Scholar] [CrossRef]
- Asli, B.H.S.; Flusser, J. New discrete orthogonal moments for signal analysis. Signal Process. 2017, 141, 57–73. [Google Scholar] [CrossRef]
- Daoui, A.; Karmouni, H.; Sayyouri, M.; Qjidaa, H. New method for bio-signals zero-watermarking using quaternion shmaliy moments and short-time fourier transform. Multimed. Tools Appl. 2022, 81, 17369–17399. [Google Scholar] [CrossRef]
- Koekoek, R.; Lesky, P.A.; Swarttouw, R.F.; Koekoek, R.; Lesky, P.A.; Swarttouw, R.F. Hypergeometric Orthogonal Polynomials; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Hao, P.; Shi, Q. Matrix factorizations for reversible integer mapping. IEEE Trans. Signal Process. 2001, 49, 2314–2324. [Google Scholar]
- Zhou, H.; Ling, X.T.; Yu, J. Secure communication via one-dimensional chaotic inverse systems. In Proceedings of the 1997 IEEE International Symposium on Circuits and Systems (ISCAS), Hong Kong, China, 12 June 1997; Volume 2, pp. 1029–1032. [Google Scholar]
- Hermassi, H.; Rhouma, R.; Belghith, S. Joint compression and encryption using chaotically mutated Huffman trees. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 2987–2999. [Google Scholar] [CrossRef]
- Tseng, K.K.; Jiang, J.M.; Pan, J.S.; Tang, L.L.; Hsu, C.Y.; Chen, C.C. Enhanced Huffman coding with encryption for wireless data broadcasting system. In Proceedings of the 2012 International Symposium on Computer, Consumer and Control, Taichung, Taiwan, 4–6 June 2012; pp. 622–625. [Google Scholar]
- Yuan, S.; Hu, J. Research on image compression technology based on Huffman coding. J. Vis. Commun. Image Represent. 2019, 59, 33–38. [Google Scholar] [CrossRef]
- Gormish, M.J.; Schwartz, E.L.; Keith, A.F.; Boliek, M.P.; Zandi, A. Lossless and nearly lossless compression for high-quality images. Proc. Very High Resolut. Qual. Imaging II 1997, 3025, 62–70. [Google Scholar]
- Daoui, A.; Yamni, M.; Karmouni, H.; Sayyouri, M.; Qjidaa, H. Stable computation of higher order Charlier moments for signal and image reconstruction. Inf. Sci. 2020, 521, 251–276. [Google Scholar] [CrossRef]
- Daoui, A.; Yamni, M.; Karmouni, H.; Sayyouri, M.; Qjidaa, H.; Ahmad, M.; Abd El-Latif, A.A. Biomedical Multimedia encryption by fractional-order Meixner polynomials map and quaternion fractional-order Meixner moments. IEEE Access 2022, 10, 102599–102617. [Google Scholar] [CrossRef]
- Daoui, A.; Karmouni, H.; Sayyouri, M.; Qjidaa, H. Fast and stable computation of higher-order Hahn polynomials and Hahn moment invariants for signal and image analysis. Multimed. Tools Appl. 2021, 80, 32947–32973. [Google Scholar] [CrossRef] [PubMed]
- Daoui, A.; Karmouni, H.; Yamni, M.; Sayyouri, M.; Qjidaa, H. On computational aspects of high-order dual Hahn moments. Pattern Recognit. 2022, 127, 108596. [Google Scholar] [CrossRef]
- Daoui, A.; Karmouni, H.; Sayyouri, M.; Qjidaa, H. Stable analysis of large-size signals and images by Racah’s discrete orthogonal moments. J. Comput. Appl. Math. 2022, 403, 113830. [Google Scholar] [CrossRef]
- Alotaibi, R.A.; Elrefaei, L.A. Text-image watermarking based on integer wavelet transform (IWT) and discrete cosine transform (DCT). Appl. Comput. Infor. 2019, 15, 191–202. [Google Scholar] [CrossRef]
- The Visible Human Project. Available online: https://www.nlm.nih.gov/research/visible/frozen_ct.html (accessed on 27 July 2021).
- Alvarez, G.; Li, S. Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurc. Chaos 2006, 16, 2129–2151. [Google Scholar] [CrossRef]
- 0T GE Discovery 750W MRI Scanner Images. Available online: https://medicine.uiowa.edu/mri/30t-ge-discovery-750w-mri-scanner-images (accessed on 11 March 2022).
- Human Connectome Project | Gallery. Available online: http://www.humanconnectomeproject.org/gallery/ (accessed on 20 August 2021).
- Wu, Y.; Noonan, J.P.; Agaian, S. NPCR and UACI randomness tests for image encryption. Cyber J. Multidiscip. J. Sci. Technol. J. Sel. Areas Telecommun. 2011, 1, 31–38. [Google Scholar]
- Radiopaedia. Available online: https://radiopaedia.org/ (accessed on 25 June 2023).
- Standard Test Images. Available online: https://ccia.ugr.es/cvg/dbimagenes/ (accessed on 25 June 2023).
Scheme | Used Tools | Advantages | Disadvantages |
---|---|---|---|
[37] |
|
|
|
[38] |
|
|
|
[9] |
|
|
|
[39] |
|
|
|
[40] |
|
|
|
Proposed work |
|
|
|
Image | Direction | Img 1 | Img 2 | Img 3 | Img 4 | Ima 5 | Img 6 | Average |
---|---|---|---|---|---|---|---|---|
Input Images | Horizontal | 0.9880 | 0.9914 | 0.9814 | 0.9705 | 0.9780 | 0.9415 | 0.9751 |
Vertical | 0.9903 | 0.9975 | 0.9850 | 0.9837 | 0.9910 | 0.9766 | 0.9874 | |
Diagonal | 0.9953 | 0.9902 | 0.9671 | 0.9806 | 0.9865 | 0.9659 | 0.9809 | |
Compressed–encrypted images | Horizontal | 0.0031 | 0.0011 | 0.0106 | 0.1054 | 0.0161 | 0.0335 | 0.0133 |
Vertical | 0.0021 | 0.0121 | 0.0038 | 0.0320 | 0.0003 | 0.0085 | 0.0098 | |
Diagonal | 0.0206 | 0.0303 | 0.0232 | 0.0264 | 0.0149 | 0.0165 | 0.0132 |
Compression–Encryption Phase | ||||
---|---|---|---|---|
Size of Images | Pre-Processing and IDST | Huffman and Binary-to-Integer Coding | Encryption Process | Total Runtime |
512 × 512 | 0.3283 | 5.7249 | 0.0472 | 6.1004 |
1024 × 1024 | 1.0310 | 15.4158 | 0.1106 | 16.5574 |
1024 × 1024 × 3 | 3.0532 | 46.2225 | 0.3320 | 49.6077 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daoui, A.; Mao, H.; Yamni, M.; Li, Q.; Alfarraj, O.; Abd El-Latif, A.A. Novel Integer Shmaliy Transform and New Multiparametric Piecewise Linear Chaotic Map for Joint Lossless Compression and Encryption of Medical Images in IoMTs. Mathematics 2023, 11, 3619. https://doi.org/10.3390/math11163619
Daoui A, Mao H, Yamni M, Li Q, Alfarraj O, Abd El-Latif AA. Novel Integer Shmaliy Transform and New Multiparametric Piecewise Linear Chaotic Map for Joint Lossless Compression and Encryption of Medical Images in IoMTs. Mathematics. 2023; 11(16):3619. https://doi.org/10.3390/math11163619
Chicago/Turabian StyleDaoui, Achraf, Haokun Mao, Mohamed Yamni, Qiong Li, Osama Alfarraj, and Ahmed A. Abd El-Latif. 2023. "Novel Integer Shmaliy Transform and New Multiparametric Piecewise Linear Chaotic Map for Joint Lossless Compression and Encryption of Medical Images in IoMTs" Mathematics 11, no. 16: 3619. https://doi.org/10.3390/math11163619
APA StyleDaoui, A., Mao, H., Yamni, M., Li, Q., Alfarraj, O., & Abd El-Latif, A. A. (2023). Novel Integer Shmaliy Transform and New Multiparametric Piecewise Linear Chaotic Map for Joint Lossless Compression and Encryption of Medical Images in IoMTs. Mathematics, 11(16), 3619. https://doi.org/10.3390/math11163619