Distributed Fixed-Time Energy Management for Port Microgrid Considering Transmissive Efficiency
Abstract
:1. Introduction
- (1).
- This paper proposes a distributed fixed-time energy management method. An optimal power allocation strategy can be obtained in a settling time to improve the efficiency of the port microgrid. Different from [24,25,26,27], the initial state is arbitrary and does not require a transformation of the dual problem under the proposed method.
- (2).
- A distributed polymorphic energy management configuration for the port microgrid is constructed. On the one hand, information exchange between heterogeneous devices can be completed under this configuration. On the other hand, the polymorphic network provides a computing platform to solve the EMP of a port microgrid.
- (3).
- A connected networking mechanism is designed based on information transmissive distances. The connected communication topology with the shortest total path significantly improves the transmissive efficiency of the port microgrid. Meanwhile, the effectiveness of the proposed method is not affected so it can solve the EMP of the port microgrid.
2. Problem Formulation and Preliminaries
2.1. EMP of Port Microgrid
2.2. Notation
2.3. Graph Theory
2.4. Useful Lemmas
3. Distributed Fixed-Time Energy Management Method for Port Microgrid
4. Polymorphic Network and Topology Construction for Port Microgrid
4.1. Configuration for Distributed Polymorphic Energy Management
4.2. Connected Networking Mechanism
Algorithm 1: Connected Networking Mechanism based on Information Transmission Distance |
Input: The geographical location set of generators: , node distance set: ,, , , , , . Output: the adjacency matrix STEP 1:
|
5. Simulation
5.1. CASE1: Communication Topology with 15 Nodes by Connected Networking Mechanism
5.2. CASE2: Energy Management with 15 Nodes Based on Connected Networking Mechanism and Distributed Fixed-Time Energy Management Method
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Iris, C.; Lam, J.S.L. Optimal energy management and operations planning in seaports with smart grid while harnessing renewable energy under uncertainty. Omega 2021, 103, 102445. [Google Scholar] [CrossRef]
- Molavi, A.; Shi, J.; Wu, Y.; Lim, G.J. Enabling smart ports through the integration of microgrids: A two-stagestochastic programming approach. Appl. Energy 2020, 258, 114022. [Google Scholar] [CrossRef]
- Vettuparambil, A.; Raveendran Nair Prasannakumari, P.; Alharbi, W.; Humayd, A.S.B.; Awan, A.B. Buck-Boost-Integrated, Dual-Active Bridge-Based Four-Port Interface for Hybrid Energy Systems. Sustainability 2020, 14, 15555. [Google Scholar] [CrossRef]
- Bilbao, J.; Bravo, E.; Garcia, O.; Rebollar, C.; Varela, C. Optimising Energy Management in Hybrid Microgrids. Mathematics 2022, 10, 214. [Google Scholar] [CrossRef]
- Binetti, G.; Davoudi, A.; Lewis, F.L.; Naso, D.; Turchiano, B. Distributed Consensus-Based Economic Dispatch With Transmission Losses. IEEE Trans. Power Syst. 2014, 29, 1711–1720. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Liang, X.; Huang, B. Event-Triggered-Based Distributed Cooperative Energy Management for Multienergy Systems. IEEE Trans. Ind. Inf. 2019, 15, 2008–2022. [Google Scholar] [CrossRef]
- Acciaro, M.; Ghiara, H.; Cusano, M.I. Energy management in seaports: A new role for port authorities. Energy Policy 2014, 71, 4–12. [Google Scholar] [CrossRef]
- Iris, C.; Lam, J.S.L. A review of energy efficiency in ports: Operational strategies, technologies and energy management systems. Renew. Sustain. Energy Rev. 2019, 112, 170–182. [Google Scholar] [CrossRef]
- Li, Y.; Gao, D.W.; Gao, W.; Zhang, H.; Zhou, J. A Distributed Double-Newton Descent Algorithm for Cooperative Energy Management of Multiple Energy Bodies in Energy Internet. IEEE Trans. Ind. Inf. 2021, 17, 5993–6003. [Google Scholar] [CrossRef]
- Schulze, M.; Nehler, H.; Ottosson, M.; Thollander, P. Energy management in industry–a systematic review of previous findings and an integrative conceptual framework. J. Clean Prod. 2016, 112, 3692–3708. [Google Scholar] [CrossRef]
- Sifakis, N.; Tsoutsos, T. Planning zero-emissions ports through the nearly zero energy port concept. J. Clean. Prod. 2021, 286, 125448. [Google Scholar] [CrossRef]
- Ivanov, O.; Neagu, B.-C.; Grigoras, G.; Scarlatache, F.; Gavrilas, M. A Metaheuristic Algorithm for Flexible Energy Storage Management in Residential Electricity Distribution Grids. Mathematics 2021, 9, 2375. [Google Scholar] [CrossRef]
- Majidi, A.; Al-e-Hashem, S.M.J.M.; Zolfani, S.H. Sustainability Ranking of the Iranian Major Ports by Using MCDM Methods. Mathematics 2021, 9, 2451. [Google Scholar] [CrossRef]
- Kanellos, F.D.; Volanis, E.-S.M.; Hatziargyriou, N.D. Power Management Method for Large Ports With Multi-Agent Systems. IEEE Trans. Smart Grid 2019, 10, 1259–1268. [Google Scholar] [CrossRef]
- Shan, Q.; Song, J.; Xu, Q.; Xiao, G.; Yu, F. Polymorphic Distributed Energy Management for Low-Carbon Port Microgrid With Carbon Capture and Carbon Storage Devices. Front. Energy Res. 2022, 10, 951192. [Google Scholar] [CrossRef]
- Shan, Q.; Zhang, X.; Zhang, Q.; Sun, Q. Distributed Energy Management for Port Power System under False Data Injection Attacks. Complexity 2022, 2022, 5995281. [Google Scholar] [CrossRef]
- Teng, F.; Zhang, Q.; Zou, T.; Zhu, J.; Tu, Y.; Feng, Q. Energy Management Strategy for Seaport Integrated Energy System under Polymorphic Network. Sustainability 2023, 15, 53. [Google Scholar] [CrossRef]
- Li, Y.; Gao, D.W.; Gao, W.; Zhang, H.; Zhou, J. Double-Mode Energy Management for Multi-Energy System via Distributed Dynamic Event-Triggered Newton-Raphson Algorithm. IEEE Trans. Smart Grid 2020, 11, 5339–5356. [Google Scholar] [CrossRef]
- Morstyn, T.; Hredzak, B.; Agelidis, V.G. Control Strategies for Microgrids With Distributed Energy Storage Systems: An Overview. IEEE Trans. Smart Grid 2018, 9, 3652–3666. [Google Scholar] [CrossRef]
- Mouktonglang, T.; Yimnet, S. Finite-Time Boundedness of Linear Uncertain Switched Positive Time-Varying Delay Systems with Finite-Time UnboundedSubsystems and Exogenous Disturbance. Mathematics 2022, 10, 65. [Google Scholar] [CrossRef]
- Basin, M.V.; Yu, P.; Shtessel, Y.B. Hypersonic Missile Adaptive Sliding Mode Control Using Finite- and Fixed-Time Observers. IEEE Trans. Ind. Electron. 2018, 65, 930–941. [Google Scholar] [CrossRef]
- Khonchaivaphum, I.; Samorn, N.; Botmart, T.; Mukdasai, K. Finite-Time Passivity Analysis of Neutral-Type Neural Networks with Mixed Time-Varying Delays. Mathematics 2022, 9, 3321. [Google Scholar] [CrossRef]
- Taoussi, M.; El Akchioui, N.; Bardane, A.; ElFezaz, N.; Farkous, R.; Tissir, E.; AL-Arydah, M. Design of Finite Time Reduced Order H infinity Controller for Linear Discrete Time Systems. Mathematics 2023, 11, 31. [Google Scholar] [CrossRef]
- Dai, H.; Jia, J.; Yan, L.; Fang, X.; Chen, W. Distributed Fixed-Time Optimization in Economic Dispatch Over Directed Networks. IEEE Trans. Ind. Inf. 2021, 17, 3011–3019. [Google Scholar] [CrossRef]
- Firouzbahrami, M.; Nobakhti, A. Cooperative fixed-time/finite-time distributed robust optimization of multi-agent systems. Automatica 2022, 142, 110358. [Google Scholar] [CrossRef]
- Chen, G.; Ren, J.; Feng, E.N. Distributed Finite-Time Economic Dispatch of a Network of Energy Resources. IEEE Trans. Smart Grid 2017, 8, 822–832. [Google Scholar] [CrossRef]
- Mao, S.; Dong, Z.; Schultz, P.; Tang, Y.; Meng, K.; Dong, Z.Y.; Qian, F. A Finite-Time Distributed Optimization Algorithm for Economic Dispatch in Smart Grids. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 2068–2079. [Google Scholar] [CrossRef]
- Ashfag, R.A.R.; Wang, X.Z.; Huang, J.Z.; Abbas, H.; He, Y.L. Fuzziness based semi-supervised learning approach for intrusion detection system. Inf. Sci. 2017, 378, 484–497. [Google Scholar] [CrossRef]
- Li, T.; Chen, L.; Jensen, C.S.; Pedersen, T.B. TRACE: Real-time Compression of Streaming Trajectories in Road Networks. Proc. VLDB Endow. 2021, 13, 1175–1187. [Google Scholar] [CrossRef]
- Alnwaimi, G.; Vahid, S.; Moessner, K. Dynamic Heterogeneous Learning Games for Opportunistic Access in LTE-Based Macro/Femtocell Deployments. IEEE Trans. Wirel. Commun. 2015, 14, 2294–2308. [Google Scholar] [CrossRef]
- Aprem, A.; Murthy, C.R.; Mehta, N.B. Transmit Power Control Policies for Energy Harvesting Sensors With Retransmissions. IEEE J. Sel. Top. Signal Process. 2013, 7, 895–906. [Google Scholar] [CrossRef]
- Assra, A.; Yang, J.X.; Champagne, B. An EM Approach for Cooperative Spectrum Sensing in Multiantenna CR Networks. IEEE Trans. Veh. Technol. 2016, 65, 1229–1243. [Google Scholar] [CrossRef]
- Maghsudi, S.; Stanczak, S. Channel Selection for Network-Assisted D2D Communication via No-Regret Bandit Learning With Calibrated Forecasting. IEEE Trans. Wirel. Commun. 2015, 14, 1309–1322. [Google Scholar] [CrossRef]
- Li, T.; Chen, L.; Jensen, C.S.; Pedersen, T.B.; Gao, Y.; Hu, J. Evolutionary Clustering of Moving Objects. In Proceedings of the 2022 IEEE 38th International Conference on Data Engineering (ICDE), Kuala Lumpur, Malaysia, 9–12 May 2022; pp. 2399–2411. [Google Scholar]
- Noor-A-Rahim, M.; Liu, Z.L.; Lee, H.; Ali, G.G.M.N.; Pesch, D.; Xiao, P. A Survey on Resource Allocation in Vehicular Networks. IEEE Trans. Intell. Transp. Syst. 2022, 23, 701–721. [Google Scholar] [CrossRef]
- Pham, O.V.; Miralili, S.; Kumar, N.; Alazab, M.; Hwang, W. Whale Optimization Algorithm With Applications to Resource Allocation in Wireless Networks. IEEE Trans. Veh. Technol. 2020, 69, 4285–4297. [Google Scholar] [CrossRef]
- Maraa, O.; Rajasekaran, A.S.; Al-Ahmadi, S.; Yanikomeroglu, H.; Sait, S.M. A Survey of Rate-Optimal Power Domain NOMA With Enabling Technologies of Future Wireless Networks. IEEE Commun. Surv. Tutorials 2020, 22, 2192–2235. [Google Scholar] [CrossRef]
- Arasteh, H.; Sepasian, M.S.; Vahidinasab, V. An Aggregated Model for Coordinated Planning and Reconfiguration of Electric Distribution Networks. Energy 2016, 94, 786–796. [Google Scholar] [CrossRef]
- Nunna, H.S.V.S.K.; Doolla, S. Multiagent-Based Distributed-Energy-Resource Management for lntelligent Microgrids. IEEE Trans. Ind. Electron. 2012, 60, 2019–2034. [Google Scholar]
- Rajaei, A.; Fattaheian-Dehkordi, S.; Fotuhi-Firuzabad, M.; Moeini-Aghtaie, M.; Lehtonen, M. Developing a Distributed Robust Energy Management Framework for Active Distribution Systems. IEEE Trans. Sustain. Energy 2021, 12, 1891–1902. [Google Scholar] [CrossRef]
- Stephen, B.; Boyd, S.P.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Liu, Q.; Wang, J. A One-Layer Projection Neural Network for Nonsmooth Optimization Subject to Linear Equalities and Bound Constraints. IEEE Trans. Neural Networks Learn. Syst. 2013, 24, 812–824. [Google Scholar] [CrossRef]
- Hardy, G.; Littlewood, J.; Polya, G. (Eds.) Inequalities; Cambridge University Press: Cambridge, UK, 1952. [Google Scholar]
- Bhat, S.P.; Bernstein, D.S. Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 2000, 38, 751–766. [Google Scholar] [CrossRef]
- Polyakov, A.; Efimov, D.; Perruquetti, W. Finite-time and fixed-time stabilization: Lmplicit Lyapunov function approach. Automatica 2015, 51, 332–340. [Google Scholar] [CrossRef]
- Chen, G.; Yang, Q.; Song, Y.; Lewis, F.L. Fixed-Time Projection Algorithm for Distributed Constrained Optimization on Time-Varying Digraphs. IEEE Trans. Autom. Control 2022, 67, 390–397. [Google Scholar] [CrossRef]
Node | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.040 | 0.035 | 0.030 | 0.040 | 0.030 | 0.035 | 0.040 | 0.040 | 0.030 | 0.030 | 0.030 | 0.040 | 0.040 | 0.030 | 0.030 | |
2.0 | 3.0 | 4.0 | 3.0 | 3.0 | 2.0 | 1.5 | 2.0 | 1.5 | 4.0 | 4.0 | 2.5 | 3.0 | 4.0 | 4.0 | |
261.27 | 206.35 | 301.32 | 264.36 | 284.82 | 346.21 | 362.15 | 412.30 | 283.46 | 362.12 | 196.25 | 254.60 | 175.85 | 265.21 | 213.25 | |
0 | 0 | 0 | 0 | 0 | 20 | 0 | 0 | 0 | 20 | 0 | 0 | 15 | 0 | 0 | |
150 | 150 | 200 | 160 | 200 | 200 | 150 | 140 | 200 | 150 | 200 | 200 | 200 | 130 | 200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ban, Z.; Teng, F.; Zhang, H.; Li, S.; Xiao, G.; Guan, Y. Distributed Fixed-Time Energy Management for Port Microgrid Considering Transmissive Efficiency. Mathematics 2023, 11, 3674. https://doi.org/10.3390/math11173674
Ban Z, Teng F, Zhang H, Li S, Xiao G, Guan Y. Distributed Fixed-Time Energy Management for Port Microgrid Considering Transmissive Efficiency. Mathematics. 2023; 11(17):3674. https://doi.org/10.3390/math11173674
Chicago/Turabian StyleBan, Zixiao, Fei Teng, Huifeng Zhang, Shuo Li, Geyang Xiao, and Yajuan Guan. 2023. "Distributed Fixed-Time Energy Management for Port Microgrid Considering Transmissive Efficiency" Mathematics 11, no. 17: 3674. https://doi.org/10.3390/math11173674
APA StyleBan, Z., Teng, F., Zhang, H., Li, S., Xiao, G., & Guan, Y. (2023). Distributed Fixed-Time Energy Management for Port Microgrid Considering Transmissive Efficiency. Mathematics, 11(17), 3674. https://doi.org/10.3390/math11173674