Media Tone and Stock Price Crash Risk: Evidence from China
Abstract
:1. Introduction
2. Literature Review and Hypothesis
2.1. Stock Price Crash Risk
2.2. Media Tone
3. Research Design
3.1. Data Description
3.2. Measuring of Price Crash
3.3. Measuring of the Internet Media
3.4. Model
4. Empirical Results
4.1. Media Tone and Stock Price Crash Risk
4.2. Robustness Tests
4.2.1. Winsorizing Some Variables
Dep. Var.= | NCSKEW | DUVOL | ||||
---|---|---|---|---|---|---|
opt | 0.072 ** | 0.053 ** | ||||
(2.19) | (2.46) | |||||
neu | 0.039 | 0.013 | ||||
(0.94) | (0.49) | |||||
pes | −0.109 *** | −0.068 *** | ||||
(−3.12) | (−3.02) | |||||
Control variables | YES | |||||
Year fixed effects | YES | |||||
Industry fixed effects | YES | |||||
Firm fixed effects | YES | |||||
N | 29,524 | 29,524 | 29,524 | 29,524 | 29,524 | 29,524 |
R-squared | 0.203 | 0.203 | 0.203 | 0.201 | 0.201 | 0.201 |
Dep. Var.= | opt | pes | NCSKEW | DUVOL | ||
---|---|---|---|---|---|---|
1st Stage | 1st Stage | 2nd Stage | 2nd Stage | 2nd Stage | 2nd Stage | |
Median opt | 0.750 *** | |||||
(32.38) | ||||||
Median pes | 0.746 *** | |||||
(33.85) | ||||||
opt | 0.605 *** | 0.505 *** | ||||
(3.85) | (4.97) | |||||
pes | −1.048 *** | −0.809 *** | ||||
(−6.43) | (−7.65) | |||||
Control variables | YES | |||||
Year fixed effects | YES | |||||
Industry fixed effects | YES | |||||
N | 29,524 | 29,524 | 29,524 | 29,524 | 29,524 | 29,524 |
R-squared | 0.139 | 0.157 | 0.046 | 0.027 | 0.046 | 0.019 |
4.2.2. Controlling More Variables
4.2.3. Controlling for Firm Fixed Effect
4.2.4. Instrumental Variable Analysis
4.3. Further Analysis
NCSKEW | Lower | Higher | ||||
---|---|---|---|---|---|---|
opt | −0.003 | 0.171 *** | ||||
(−0.05) | (3.19) | |||||
neu | 0.014 | −0.023 | ||||
(0.23) | (−0.33) | |||||
pes | −0.008 | −0.202 *** | ||||
(−0.14) | (−3.32) | |||||
RET | 0.240 | 0.241 | 0.240 | 0.248 | 0.262 * | 0.258 |
(1.11) | (1.12) | (1.11) | (1.56) | (1.65) | (1.63) | |
SIGMA | 3.266 ** | 3.276 ** | 3.273 ** | 3.214 *** | 3.257 *** | 3.314 *** |
(2.28) | (2.29) | (2.29) | (2.89) | (2.92) | (2.98) | |
ROA | 0.284 ** | 0.282 ** | 0.281 ** | −0.104 | −0.049 | −0.101 |
(2.20) | (2.20) | (2.17) | (−0.73) | (−0.35) | (−0.71) | |
LEV | −0.046 | −0.046 | −0.046 | −0.101 ** | −0.093 * | −0.101 ** |
(−0.95) | (−0.95) | (−0.95) | (−2.08) | (−1.92) | (−2.08) | |
BM | −0.087 * | −0.087 * | −0.087 * | −0.378 *** | −0.376 *** | −0.379 *** |
(−1.70) | (−1.70) | (−1.70) | (−8.95) | (−8.91) | (−8.98) | |
SIZE | −0.026 ** | −0.026 ** | −0.026 ** | 0.013 * | 0.010 | 0.012 |
(−2.31) | (−2.32) | (−2.31) | (1.70) | (1.26) | (1.50) | |
DTURN | −0.043 *** | −0.043 *** | −0.043 *** | −0.014 | −0.013 | −0.013 |
(−2.72) | (−2.71) | (−2.72) | (−0.85) | (−0.77) | (−0.77) | |
ABACC | 0.011 | 0.011 | 0.011 | 0.143 *** | 0.142 *** | 0.142 *** |
(0.29) | (0.29) | (0.29) | (3.75) | (3.72) | (3.73) | |
NCSKEW | 0.061 *** | 0.061 *** | 0.061 *** | 0.025 ** | 0.024 ** | 0.026 ** |
(6.07) | (6.08) | (6.08) | (2.49) | (2.42) | (2.54) | |
Constant | 0.443 * | 0.441 * | 0.445 * | −0.380 * | −0.210 | −0.216 |
(1.72) | (1.72) | (1.73) | (−1.86) | (−1.06) | (−1.10) | |
Year fixed effect | YES | |||||
Industry fixed effect | YES | |||||
N | 10,840 | 10,840 | 10,840 | 10,725 | 10,725 | 10,725 |
R-square | 0.065 | 0.065 | 0.065 | 0.089 | 0.088 | 0.089 |
DUVOL | Lower | Higher | ||||
---|---|---|---|---|---|---|
opt | 0.008 | 0.115 *** | ||||
(0.25) | (3.10) | |||||
neu | 0.004 | −0.023 | ||||
(0.10) | (−0.49) | |||||
pes | −0.012 | −0.130 *** | ||||
(−0.36) | (−3.08) | |||||
RET | 0.188 | 0.189 | 0.189 | 0.191 * | 0.200 * | 0.198 * |
(1.37) | (1.38) | (1.38) | (1.74) | (1.82) | (1.81) | |
SIGMA | 2.033 ** | 2.034 ** | 2.042 | 1.996 *** | 2.020 *** | 2.061 *** |
(2.23) | (2.24) | (2.24) | (2.60) | (2.63) | (2.68) | |
ROA | 0.169 ** | 0.171 ** | 0.167 ** | 0.001 | 0.038 | 0.005 |
(2.06) | (2.09) | (2.03) | (0.01) | (0.39) | (0.05) | |
LEV | −0.019 | −0.019 | −0.019 | −0.076 ** | −0.071 ** | −0.076 ** |
(−0.63) | (−0.63) | (−0.63) | (−2.26) | (−2.11) | (−2.25) | |
BM | −0.001 | −0.001 | −0.001 | −0.213 *** | −0.212 *** | −0.214 *** |
(−0.03) | (−0.03) | (−0.03) | (−7.31) | (−7.27) | (−7.33) | |
SIZE | −0.034 *** | −0.034 *** | −0.034 *** | −0.003 | −0.006 | −0.005 |
(−4.77) | (−4.77) | (−4.79) | (−0.65) | (−1.08) | (−0.87) | |
DTURN | −0.029 *** | −0.029 *** | −0.029 *** | −0.008 | −0.007 | −0.007 |
(−2.90) | (−2.89) | (−2.90) | (−0.67) | (−0.60) | (−0.59) | |
ABACC | 0.035 | 0.035 | 0.035 | 0.045 * | 0.044 * | 0.045 * |
(1.42) | (1.42) | (1.42) | (1.71) | (1.68) | (1.69) | |
NCSKEW | 0.032 *** | 0.032 *** | 0.032 *** | 0.019 *** | 0.018 *** | 0.019 *** |
(5.07) | (5.06) | (5.07) | (2.68) | (2.60) | (2.72) | |
Constant | 0.605 *** | 0.609 *** | 0.614 *** | 0.073 | 0.187 | 0.183 |
(3.68) | (3.73) | (3.75) | (0.52) | (1.37) | (1.34) | |
Year fixed effect | YES | |||||
Industry fixed effect | YES | |||||
N | 10,840 | 10,840 | 10,840 | 10,725 | 10,725 | 10,725 |
R-square | 0.074 | 0.074 | 0.074 | 0.093 | 0.092 | 0.093 |
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Variables | Definition |
---|---|
Crash risk measures | |
The negative skewness of firm-specific weekly returns in a fiscal year t. See Equations (1)–(3) for details. | |
The log of the ratio of the standard deviations of down-week to up-week firm-specific returns in fiscal year t. See Equations (1), (2), and (4) for details. | |
Media coverage measures | |
The proportion of optimistic coverage from internet media in fiscal year . | |
The proportion of neutral coverage from internet media in fiscal year . | |
The proportion of pessimistic coverage from internet media in fiscal year . | |
Other variables | |
The mean of firm-specific weekly returns times 100 in fiscal year . The firm-specific weekly returns are calculated based on Equations (1) and (2). | |
SIGMA | The standard deviation of firm-specific weekly returns in fiscal year . The firm-specific weekly returns are calculated based on Equations (1) and (2). |
Net profit divided by the total assets in fiscal year . | |
Total debts divided by the total assets in fiscal year . | |
The ratio of the book value of equity to the market value of equity in fiscal year . | |
The natural logarithm of the total assets in fiscal year | |
The average monthly share turnover in fiscal year minus the average monthly share turnover in fiscal year , where monthly share turnover is the monthly trading volume divided by the total number of floating shares on the market that month. | |
The absolute value of discretionary accruals in fiscal year , where discretionary accruals are estimated from the modified Jones model. | |
The natural logarithm of the number of board directors in the board in fiscal year . | |
The proportion of independent directors on the board in fiscal year . | |
duality | A dummy variable that equals 1 if the CEO and chairman are the same person in fiscal year t, and 0 otherwise. |
References
- Hu, J.; Li, S.; Taboada, A.G.; Zhang, F. Corporate board reforms around the world and stock price crash risk. J. Corp. Financ. 2020, 62, 101557. [Google Scholar] [CrossRef]
- Jiang, K.; Du, X.; Chen, Z. Firms’ digitalization and stock price crash risk. Int. Rev. Financ. Anal. 2022, 82, 102196. [Google Scholar] [CrossRef]
- Al Mamun, M.; Balachandran, B.; Duong, H.N. Powerful CEOs and stock price crash risk. J. Corp. Financ. 2020, 62, 101582. [Google Scholar] [CrossRef]
- Hasan, M.M.; Taylor, G.; Richardson, G. Brand capital and stock price crash risk. Manag. Sci. 2022, 68, 7221–7247. [Google Scholar] [CrossRef]
- Bae, J.; Yang, X.; Kim, M.I. ESG and stock price crash risk: Role of financial constraints. Asia-Pac. J. Financ. Stud. 2021, 50, 556–581. [Google Scholar] [CrossRef]
- Wu, K.; Fu, Y.; Kong, D. Does the digital transformation of enterprises affect stock price crash risk? Financ. Res. Lett. 2022, 48, 102888. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, C. Economic policy uncertainty and stock price crash risk. Res. Int. Bus. Financ. 2020, 51, 101112. [Google Scholar] [CrossRef]
- Huang, S.; Liu, H. Impact of COVID-19 on stock price crash risk: Evidence from Chinese energy firms. Energy Econ. 2021, 101, 105431. [Google Scholar] [CrossRef]
- Wu, K.; Lai, S. Intangible intensity and stock price crash risk. J. Corp. Financ. 2020, 64, 101682. [Google Scholar] [CrossRef]
- Zaman, R.; Atawnah, N.; Haseeb, M.; Nadeem, M.; Irfan, S. Does corporate eco-innovation affect stock price crash risk? Br. Account. Rev. 2021, 53, 101031. [Google Scholar] [CrossRef]
- He, F.; Feng, Y.; Hao, J. Information disclosure source, investors’ searching and stock price crash risk. Econ. Lett. 2022, 210, 110202. [Google Scholar] [CrossRef]
- Jebran, K.; Chen, S.; Zhang, R. Board diversity and stock price crash risk. Res. Int. Bus. Financ. 2020, 51, 101122. [Google Scholar] [CrossRef]
- Jin, X.; Chen, Z.; Yang, X. Economic policy uncertainty and stock price crash risk. Account. Financ. 2019, 58, 1291–1318. [Google Scholar] [CrossRef]
- Xiao, J.; Chen, X.; Li, Y.; Wen, F. Oil price uncertainty and stock price crash risk: Evidence from China. Energy Econ. 2022, 112, 106118. [Google Scholar] [CrossRef]
- Lee, S.M.; Jiraporn, P.; Song, H. Customer concentration and stock price crash risk. J. Bus. Res. 2020, 110, 327–346. [Google Scholar] [CrossRef]
- Ji, Q.; Quan, X.; Yin, H.; Yuan, Q. Gambling preferences and stock price crash risk: Evidence from China. J. Bank. Financ. 2021, 128, 106158. [Google Scholar] [CrossRef]
- Xu, Y.; Xuan, Y.; Zheng, G. Internet searching and stock price crash risk: Evidence from a quasi-natural experiment. J. Financ. Econ. 2021, 141, 255–275. [Google Scholar] [CrossRef]
- Chen, Y.; Fan, Q.; Yang, X.; Zolotoy, L. CEO early-life disaster experience and stock price crash risk. J. Corp. Financ. 2021, 68, 101928. [Google Scholar] [CrossRef]
- Jin, X.; Liang, S.; Yu, J. Management geographical proximity and stock price crash risk. China Financ. Rev. Int. 2022, 12, 601–622. [Google Scholar] [CrossRef]
- Cheng, F.; Wang, C.; Chiao, C.; Yao, S.; Fang, Z. Retail attention, retail trades, and stock price crash risk. Emerg. Mark. Rev. 2021, 49, 100821. [Google Scholar] [CrossRef]
- Zuo, J.; Qiu, B.; Zhu, G.; Lei, G. Local speculative culture and stock price crash risk. Res. Int. Bus. Financ. 2023, 64, 101851. [Google Scholar] [CrossRef]
- Dumitrescu, A.; Zakriya, M. Stakeholders and the stock price crash risk: What matters in corporate social performance? J. Corp. Financ. 2021, 67, 101871. [Google Scholar] [CrossRef]
- Fu, J.; Wu, X.; Liu, Y.; Chen, R. Firm-specific investor sentiment and stock price crash risk. Financ. Res. Lett. 2021, 38, 101442. [Google Scholar] [CrossRef]
- An, Z.; Chen, C.; Naiker, V.; Wang, J. Does media coverage deter firms from withholding bad news? Evidence from stock price crash risk. J. Corp. Financ. 2020, 64, 101664. [Google Scholar] [CrossRef]
- Si, Y.; Xia, C. The effect of human capital on stock price crash risk. J. Bus. Ethics 2022, 1–21. [Google Scholar] [CrossRef]
- Xu, L.; Rao, Y.; Cheng, Y.; Wang, J. Internal coalition and stock price crash risk. J. Corp. Financ. 2020, 64, 101640. [Google Scholar] [CrossRef]
- Jebran, K.; Chen, S.; Ye, Y.; Wang, C. Confucianism and stock price crash risk: Evidence from China. N. Am. J. Econ. Financ. 2019, 50, 100995. [Google Scholar] [CrossRef]
- Aman, H. An analysis of the impact of media coverage on stock price crashes and jumps: Evidence from Japan. Pac.-Basin Financ. J. 2013, 24, 22–38. [Google Scholar] [CrossRef]
- Wen, F.; Xu, L.; Ouyang, G.; Kou, G. Retail investor attention and stock price crash risk: Evidence from China. Int. Rev. Financ. Anal. 2019, 65, 101376. [Google Scholar] [CrossRef]
- Yang, X.; Zhu, Y.; Cheng, T.Y. How the individual investors took on big data: The effect of panic from the internet stock message boards on stock price crash. Pac.-Basin Financ. J. 2020, 59, 101245. [Google Scholar] [CrossRef]
- Miller, G.S. The press as a watchdog for accounting fraud. J. Account. Res. 2006, 44, 1001–1033. [Google Scholar] [CrossRef]
- Bushee, B.J.; Core, J.E.; Guay, W.; Hamm, S.J.W. The Role of the Business Press as an Information Intermediary. J. Account. Res. 2010, 48, 1–19. [Google Scholar] [CrossRef]
- Dai, L.; Parwada, J.T.; Zhang, B. The Governance Effect of the Medias̈ News Dissemination Role: Evidence from Insider Trading. J. Account. Res. 2015, 53, 331–366. [Google Scholar] [CrossRef]
- Chen, J.; Hong, H.; Stein, J.C. Forecasting crashes: Trading volume, past returns, and conditional skewness in stock prices. J. Financ. Econ. 2001, 61, 345–381. [Google Scholar] [CrossRef]
- Kim, J.B.; Li, Y.; Zhang, L. CFOs versus CEOs: Equity incentives and crashes. J. Financ. Econ. 2011, 101, 713–730. [Google Scholar] [CrossRef]
- Kim, J.B.; Li, Y.; Zhang, L. Corporate tax avoidance and stock price crash risk: Firm-level analysis. J. Financ. Econ. 2011, 100, 639–662. [Google Scholar] [CrossRef]
- Fang, L.; Peress, J. Media coverage and the cross-section of stock returns. J. Financ. 2009, 64, 2023–2052. [Google Scholar] [CrossRef]
- Guldiken, O.; Tupper, C.; Nair, A.; Yu, H. The impact of media coverage on IPO stock performance. J. Bus. Res. 2017, 72, 24–32. [Google Scholar] [CrossRef]
- Huang, T.; Zhang, X. Industry-level media tone and the cross-section of stock returns. Int. Rev. Econ. Financ. 2022, 77, 59–77. [Google Scholar] [CrossRef]
- Shyu, H.; Gao, F.; Wu, P.; Zhu, S. Earnings dispersion in the spotlight: The effects of media coverage on stock liquidity. Pac.-Basin Financ. J. 2020, 60, 101161. [Google Scholar] [CrossRef]
- Jang, J.; Kang, J. Probability of price crashes, rational speculative bubbles, and the cross-section of stock returns. J. Financ. Econ. 2019, 132, 222–247. [Google Scholar] [CrossRef]
- Dang, T.L.; Dang, M.; Hoang, L.; Nguyen, L.; Phan, H.L. Media coverage and stock price synchronicity. Int. Rev. Financ. Anal. 2020, 67, 101430. [Google Scholar] [CrossRef]
- Li, Q.; Wang, J.; Bao, L. Media tone, bias, and stock price crash risk: Evidence from China. Asia-Pac. J. Account. Econ. 2022, 29, 1–35. [Google Scholar] [CrossRef]
- Jin, L.; Myers, S.C. R2 around the world: New theory and new tests. J. Financ. Econ. 2006, 79, 257–292. [Google Scholar] [CrossRef]
- Hutton, A.P.; Marcus, A.J.; Tehranian, H. Opaque financial reports, R2, and crash risk. J. Financ. Econ. 2009, 94, 67–86. [Google Scholar] [CrossRef]
- Kothari, S.P.; Shu, S.; Wysocki, P.D. Do managers withhold bad news? J. Account. Res. 2009, 47, 241–276. [Google Scholar] [CrossRef]
- Dyck, A.; Volchkova, N.; Zingales, L. The corporate governance role of the media: Evidence from Russia. J. Financ. 2008, 63, 1093–1135. [Google Scholar] [CrossRef]
- Joe, J.R.; Louis, H.; Robinson, D. Managers’ and investors’ responses to media exposure of board ineffectiveness. J. Financ. Quant. Anal. 2009, 44, 579–605. [Google Scholar] [CrossRef]
- Qiao, P.H.; Fung, H.G.; Wang, W. Chinese firms’ crash risk and CEO media exposure. Appl. Econ. Lett. 2018, 25, 1034–1037. [Google Scholar] [CrossRef]
- Xu, N.; Li, X.; Yuan, Q.; Chan, K.C. Excess perks and stock price crash risk: Evidence from China. J. Corp. Financ. 2014, 25, 419–434. [Google Scholar] [CrossRef]
- Green, T.C.; Jame, R.; Markov, S.; Subasi, M. Access to management and the informativeness of analyst research. J. Financ. Econ. 2014, 114, 239–255. [Google Scholar] [CrossRef]
Dep. Var.= | NCSKEW | DUVOL | ||||
---|---|---|---|---|---|---|
opt | 0.075 *** | 0.053 *** | ||||
(2.58) | (2.83) | |||||
neu | 0.002 | −0.011 | ||||
(0.04) | (−0.48) | |||||
pes | −0.087 *** | −0.053 *** | ||||
(−2.80) | (−2.64) | |||||
RET | 0.197 ** | 0.203 ** | 0.201 ** | 0.155 ** | 0.158 *** | 0.158 *** |
(2.10) | (2.16) | (2.15) | (2.56) | (2.62) | (2.62) | |
SIGMA | 2.804 *** | 2.826 *** | 2.850 *** | 1.711 *** | 1.719 *** | 1.741 *** |
(4.31) | (4.34) | (4.38) | (4.08) | (4.10) | (4.15) | |
ROA | 0.290 *** | 0.317 *** | 0.286 *** | 0.207 *** | 0.226 *** | 0.207 *** |
(4.26) | (4.70) | (4.19) | (4.73) | (5.21) | (4.72) | |
LEV | −0.071 ** | −0.071 ** | −0.070 ** | −0.040 ** | −0.041 ** | −0.040 ** |
(−2.52) | (−2.53) | (−2.51) | (−2.23) | (−2.24) | (−2.23) | |
BM | −0.278 *** | −0.280 *** | −0.280 *** | −0.129 *** | −0.131 *** | −0.131 *** |
(−10.43) | (−10.53) | (−10.51) | (−7.54) | (−7.63) | (−7.62) | |
SIZE | 0.019 *** | 0.019 *** | 0.018 *** | −0.005 | −0.004 | −0.005 |
(3.70) | (3.81) | (3.54) | (−1.44) | (−1.28) | (−1.55) | |
DTURN | −0.038 *** | −0.038 *** | −0.038 *** | −0.025 *** | −0.025 *** | −0.024 *** |
(−3.89) | (−3.87) | (−3.85) | (−3.88) | (−3.86) | (−3.84) | |
ABACC | 0.045 * | 0.045 * | 0.044 * | 0.025 | 0.025 | 0.025 |
(1.84) | (1.84) | (1.83) | (1.62) | (1.62) | (1.61) | |
NCSKEW | 0.057 *** | 0.056 *** | 0.057 *** | 0.033 *** | 0.033 *** | 0.033 *** |
(9.39) | (9.29) | (9.40) | (8.52) | (8.41) | (8.52) | |
Constant | −0.477 *** | −0.452 *** | −0.408 *** | 0.050 | 0.069 | 0.094 |
(−3.92) | (−3.73) | (−3.34) | (0.63) | (0.88) | (1.20) | |
Hausman chi-square | 4858.490 | 4912.020 | 4897.870 | 3590.030 | 3634.790 | 3612.730 |
Year fixed effect | YES | |||||
Industry fixed effect | YES | |||||
N | 29,524 | 29,524 | 29,524 | 29,524 | 29,524 | 29,524 |
R-square | 0.057 | 0.057 | 0.057 | 0.064 | 0.064 | 0.064 |
Dep. Var.= | NCSKEW | DUVOL | ||||
---|---|---|---|---|---|---|
opt | 0.064 ** | 0.045 ** | ||||
(2.32) | (2.48) | |||||
neu | 0.005 | −0.011 | ||||
(0.15) | (−0.46) | |||||
pes | −0.077 *** | −0.044 ** | ||||
(−2.61) | (−2.28) | |||||
Control variables | YES | |||||
Year fixed effects | YES | |||||
Industry fixed effects | YES | |||||
N | 29,524 | 29,524 | 29,524 | 29,524 | 29,524 | 29,524 |
R-squared | 0.061 | 0.061 | 0.061 | 0.066 | 0.066 | 0.066 |
Dep. Var.= | NCSKEW | DUVOL | ||||
---|---|---|---|---|---|---|
opt | 0.075 *** | 0.053 *** | ||||
(2.60) | (2.84) | |||||
neu | 0.001 | −0.012 | ||||
(0.02) | (−0.49) | |||||
pes | −0.087 *** | −0.053 *** | ||||
(−2.81) | (−2.64) | |||||
lnboardsize | −0.018 | −0.018 | −0.018 | −0.015 | −0.015 | −0.015 |
(−0.96) | (−1.00) | (−0.97) | (−1.24) | (−1.28) | (−1.26) | |
independence | 0.011 | 0.011 | 0.011 | 0.007 | 0.006 | 0.007 |
(0.19) | (0.16) | (0.18) | (0.18) | (0.15) | (0.17) | |
duality | 0.034 *** | 0.033 *** | 0.034 *** | 0.017 ** | 0.017 ** | 0.017 ** |
(3.25) | (3.22) | (3.23) | (2.51) | (2.48) | (2.49) | |
Control variables | YES | |||||
Year fixed effects | YES | |||||
Industry fixed effects | YES | |||||
N | 29,522 | 29,522 | 29,522 | 29,522 | 29,522 | 29,522 |
R-squared | 0.057 | 0.057 | 0.057 | 0.065 | 0.064 | 0.065 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, R.; Fan, R.; Xiong, X.; Wang, J.; Hilliard, J. Media Tone and Stock Price Crash Risk: Evidence from China. Mathematics 2023, 11, 3675. https://doi.org/10.3390/math11173675
Zhao R, Fan R, Xiong X, Wang J, Hilliard J. Media Tone and Stock Price Crash Risk: Evidence from China. Mathematics. 2023; 11(17):3675. https://doi.org/10.3390/math11173675
Chicago/Turabian StyleZhao, Ruwei, Ruixin Fan, Xiong Xiong, Jianli Wang, and Jitka Hilliard. 2023. "Media Tone and Stock Price Crash Risk: Evidence from China" Mathematics 11, no. 17: 3675. https://doi.org/10.3390/math11173675
APA StyleZhao, R., Fan, R., Xiong, X., Wang, J., & Hilliard, J. (2023). Media Tone and Stock Price Crash Risk: Evidence from China. Mathematics, 11(17), 3675. https://doi.org/10.3390/math11173675