Numerical Method for Fractional-Order Generalization of the Stochastic Stokes–Darcy Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Formulation of the Problem
2.2. Numerical Method
2.3. Theoretical Analysis of the Numerical Method
2.3.1. Preliminaries
2.3.2. Stability of the Numerical Scheme
2.3.3. Convergence of the Numerical Scheme
2.4. Implementation of the Discrete Scheme
Algorithm 1. Implementation of the th realization. |
1. For the first and second time layers: |
1.1. Introduce subtime layers within the time intervals and according to (58). |
1.2. Calculate the coefficients , , for the current n. |
1.3. Find velocity and pressure in according to (29) with , or equivalently,
|
1.4. Find piezometric head in according to (29) with and , or equivalently,
|
2. For the other time layers : |
2.1. Calculate the coefficients , , , the sums
|
2.2. Find and in according to (30) with , or equivalently,
|
2.3. Find in according to (30) with and , or equivalently,
|
3. Results
3.1. Verification of the Convergence Order
3.2. Application of the Numerical Method to the Implementation of the Fractional-Order Stochastic Stokes–Darcy Model
Algorithm 2. Implementation of the stochastic problem. |
1. Set the deterministic input data of the problem , the number of random samples , as well as the mean and variance of random parameters used to generate random physical data. |
2. Generate random parameters such as , , , and for . |
3. For each sample number , find , , and at the first two time layers according to Steps 1.1–1.4 of Algorithm 1. |
4. For the other time layers : |
4.1. Calculate in parallel the coefficients , , , the sums (67), as well as finite element functions , for all . |
4.2. Compute the entries of the stiffness matrix and right-hand side for according to (68). Evaluate the right-hand side entries for the rest sample numbers . Then solve the resulting systems of equations with identical matrices. |
4.3. Compute the entries of the stiffness matrix and right-hand side for according to (69). Evaluate the right-hand side entries for the other sample numbers . Then solve the resulting systems of equations with identical matrices. |
As a result of Steps 4.2 and 4.3, the solution on the nth time layer is obtained for all realizations . |
5. Based on the obtained solutions of the stochastic problem, evaluate statistical moments. |
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, Z.; Li, X.; He, X.; Ming, J. A stochastic collocation method based on sparse grids for a stochastic Stokes-Darcy model. Discret. Contin. Dyn. Syst. 2022, 15, 893–912. [Google Scholar] [CrossRef]
- Kumar, P.; Luo, P.; Gaspar, F.J.; Oosterlee, C.W. A multigrid multilevel Monte Carlo method for transport in the Darcy–Stokes system. J. Comput. Phys. 2018, 371, 382–408. [Google Scholar] [CrossRef]
- Jiang, N.; Qiu, C. An efficient ensemble algorithm for numerical approximation of stochastic Stokes–Darcy equations. Comput. Methods Appl. Mech. Eng. 2019, 343, 249–275. [Google Scholar] [CrossRef]
- He, X.; Jiang, N.; Qiu, C. An artificial compressibility ensemble algorithm for a stochastic Stokes–Darcy model with random hydraulic conductivity and interface conditions. Int. J. Numer. Methods Eng. 2019, 121, 712–739. [Google Scholar] [CrossRef]
- Ambartsumyan, I.; Khattatov, E.; Wang, C.; Yotov, I. Stochastic multiscale flux basis for Stokes–Darcy flows. J. Comput. Phys. 2020, 401, 109011. [Google Scholar] [CrossRef]
- Jiang, N.; Qiu, C. Numerical analysis of a second order ensemble algorithm for numerical approximation of stochastic Stokes–Darcy equations. J. Comput. Appl. Math. 2022, 406, 113934. [Google Scholar] [CrossRef]
- Caputo, M. Models of flux in porous media with memory. Water Resour. Res. 2000, 36, 693–705. [Google Scholar] [CrossRef]
- Agarwal, R.; Yadav, M.P.; Baleanu, D.; Purohit, S.D. Existence and uniqueness of miscible flow equation through porous media with a non singular fractional derivative. AIMS Math. 2020, 5, 1062–1073. [Google Scholar] [CrossRef]
- Zhong, W.; Li, C.; Kou, J. Numerical fractional-calculus model for two-phase flow in fractured media. Adv. Math. Phys. 2013, 2013, 429835. [Google Scholar] [CrossRef]
- Poljak, D.; Šesnić, S.; Cvetković, M.; Šušnjara, A.; Dodig, H.; Lalléchère, S.; Drissi, K.E. Stochastic collocation applications in computational electromagnetics. Math. Probl. Eng. 2018, 2018, 1917439. [Google Scholar] [CrossRef]
- Xiu, D. Stochastic collocation methods: A survey. In Handbook of Uncertainty Quantification; Springer International Publishing: Cham, Switzerland, 2015; pp. 1–18. [Google Scholar]
- Graham, I.G.; Kuo, F.Y.; Nichols, J.A.; Scheichl, R.; Schwab, C.; Sloan, I.H. Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients. Numer. Math. 2014, 131, 329–368. [Google Scholar] [CrossRef]
- Giles, M.B. Multilevel Monte Carlo methods. Acta Numer. 2015, 24, 259–328. [Google Scholar] [CrossRef]
- Chen, Q.; Ming, J. The multilevel Monte Carlo method for simulations of turbulent flows. Mon. Weather Rev. 2018, 146, 2933–2947. [Google Scholar] [CrossRef]
- Wang, X.; Ying, X.; Liu, Y.-J.; Xin, S.-Q.; Wang, W.; Gu, X.; Mueller-Wittig, W.; He, Y. Intrinsic computation of centroidal Voronoi tessellation (CVT) on meshes. Comput.-Aided Des. 2015, 58, 51–61. [Google Scholar] [CrossRef]
- Menčík, J. Latin hypercube sampling. In Concise Reliability for Engineers; InTech: Richardson, TX, USA, 2016. [Google Scholar]
- Jiang, N.; Layton, W. An algorithm for fast calculation of flow ensembles. Int. J. Uncertain. Quantif. 2014, 4, 273–301. [Google Scholar] [CrossRef]
- Aarnes, J.E.; Efendiev, Y. Mixed multiscale finite element methods for stochastic porous media flows. SIAM J. Sci. Comput. 2008, 30, 2319–2339. [Google Scholar] [CrossRef]
- Ma, X.; Zabaras, N. A stochastic mixed finite element heterogeneous multiscale method for flow in porous media. J. Comput. Phys. 2011, 230, 4696–4722. [Google Scholar] [CrossRef]
- Chaudhuri, A.; Sekhar, M. Stochastic finite element method for probabilistic analysis of flow and transport in a three-dimensional heterogeneous porous formation. Water Resour. Res. 2005, 41. [Google Scholar] [CrossRef]
- Yang, X.; Wu, L.; Zhang, H. A space-time spectral order sinc-collocation method for the fourth-order nonlocal heat model arising in viscoelasticity. Appl. Math. Comput. 2023, 457, 128192. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, X.; Tang, Q.; Xu, D. A robust error analysis of the OSC method for a multi-term fourth-order sub-diffusion equation. Comput. Math. Appl. 2022, 109, 180–190. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, H.; Tang, J. The OSC solver for the fourth-order sub-diffusion equation with weakly singular solutions. Comput. Math. Appl. 2021, 82, 1–12. [Google Scholar] [CrossRef]
- El Moutea, O.; El Amri, H.; El Akkad, A. Finite element method for the Stokes–Darcy problem with a new boundary condition. Numer. Anal. Appl. 2020, 13, 136–151. [Google Scholar] [CrossRef]
- Nobile, F.; Tempone, R.; Webster, C.G. An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 2008, 46, 2411–2442. [Google Scholar] [CrossRef]
- Nobile, F.; Tempone, R.; Webster, C.G. A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 2008, 46, 2309–2345. [Google Scholar] [CrossRef]
- Shi, F.; Sun, Y.; Zheng, H. Ensemble domain decomposition algorithm for the fully-mixed random Stokes–Darcy model with the Beavers-Joseph interface conditions. SIAM J. Numer. Anal. 2023, 61, 1482–1512. [Google Scholar] [CrossRef]
- Li, J.; Li, R.; Zhao, X.; Chen, Z. A second-order fractional time-stepping method for a coupled Stokes/Darcy system. J. Comput. Appl. Math. 2021, 390, 113329. [Google Scholar] [CrossRef]
- Qin, Y.; Hou, Y. The time filter for the non-stationary coupled Stokes/Darcy model. Appl. Numer. Math. 2019, 146, 260–275. [Google Scholar] [CrossRef]
- Li, Y.; Hou, Y.; Layton, W.; Zhao, H. Adaptive partitioned methods for the time-accurate approximation of the evolutionary Stokes–Darcy system. Comput. Methods Appl. Mech. Eng. 2020, 364, 112923. [Google Scholar] [CrossRef]
- Chen, W.; Gunzburger, M.; Sun, D.; Wang, X. An efficient and long-time accurate third-order algorithm for the Stokes–Darcy system. Numer. Math. 2016, 134, 857–879. [Google Scholar] [CrossRef]
- Hoang, T.-T.-P.; Lee, H. A global-in-time domain decomposition method for the coupled nonlinear Stokes and Darcy flows. J. Sci. Comput. 2021, 87, 22. [Google Scholar] [CrossRef]
- Lee, H.; Rife, K. Least squares approach for the time-dependent nonlinear Stokes–Darcy flow. Comput. Math. Appl. 2014, 67, 1806–1815. [Google Scholar] [CrossRef]
- Ervin, V.J.; Jenkins, E.W.; Sun, S. Coupling nonlinear Stokes and Darcy flow using mortar finite elements. Appl. Numer. Math. 2011, 61, 1198–1222. [Google Scholar] [CrossRef]
- Marinca, V.; Herişanu, N.; Nemeş, I. Optimal homotopy asymptotic method with application to thin film flow. Cent. Eur. J. Phys. 2008, 6, 648–653. [Google Scholar] [CrossRef]
- Temimi, H.; Ansari, A.R.; Siddiqui, A.M. An approximate solution for the static beam problem and nonlinear integro-differential equations. Comput. Math. Appl. 2011, 62, 3132–3139. [Google Scholar] [CrossRef]
- Alhejaili, W.; Alhazmi, S.E.; Nawaz, R.; Ali, A.; Asamoah, J.K.K.; Zada, L. Numerical investigation of fractional-order Kawahara and modified Kawahara equations by a semianalytical Method. J. Nanomater. 2022, 2022, 1985572. [Google Scholar] [CrossRef]
- Sarwar, S.; Alkhalaf, S.; Iqbal, S.; Zahid, M.A. A note on optimal homotopy asymptotic method for the solutions of fractional order heat- and wave-like partial differential equations. Comput. Math. Appl. 2015, 70, 942–953. [Google Scholar] [CrossRef]
- Aripov, M.; Utebaev, D.; Nurullaev, Z. Convergence of high-precision finite element method schemes for two-temperature plasma equation. In AIP Conference Proceedings; AIP Publishing: New York, NY, USA, 2021; Volume 2325, p. 020059. [Google Scholar]
- Ashyralyev, A.; Okur, U. Crank-Nicolson difference scheme for a stochastic parabolic equation with a dependent operator coefficient. In AIP Conference Proceedings; AIP Publishing: New York, NY, USA, 2016; Volume 1759, p. 020103. [Google Scholar]
- Lv, C.; Xu, C. Error analysis of a high order method for time-fractional diffusion equations. SIAM J. Sci. Comput. 2016, 38, A2699–A2724. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Sun, Z.Z.; Liao, H.L. Finite difference methods for the time fractional diffusion equation on non-uniform meshes. J. Comput. Phys. 2014, 265, 195–210. [Google Scholar] [CrossRef]
- Berdyshev, A.; Aloev, R.; Bliyeva, D.; Dadabayev, S.; Baishemirov, Z. Stability analysis of an upwind difference splitting scheme for two-dimensional Saint–Venant equations. Symmetry 2022, 14, 1986. [Google Scholar] [CrossRef]
- Aloev, R.D.; Eshkuvatov, Z.K.; Davlatov, S.O.; Nik Long, N.M.A. Sufficient condition of stability of finite element method for symmetric T-hyperbolic systems with constant coefficients. Comput. Math. Appl. 2014, 68, 1194–1204. [Google Scholar] [CrossRef]
- Beybalaev, V.D.; Abduragimov, E.I.; Yakubov, A.Z.; Meilanov, R.R.; Aliverdiev, A.A. Numerical Research of Non-Isothermal Filtration Process in Fractal Medium with Non-Locality in Time. Therm. Sci. 2021, 25, 465–475. [Google Scholar] [CrossRef]
- Cao, J.; Li, C.; Chen, Y. High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations (II). Fract. Calc. Appl. Anal. 2015, 18, 735–761. [Google Scholar] [CrossRef]
- Alimbekova, N.B.; Berdyshev, A.S.; Baigereyev, D.R. Parallel implementation of the algorithm for solving a partial differential equation with a fractional derivative in the sense of Riemann-Liouville. In Proceedings of the 2021 IEEE International Conference on Smart Information Systems and Technologies (SIST), Nur-Sultan, Kazakhstan, 28–30 April 2021. [Google Scholar] [CrossRef]
Order | Order | Order | ||||
---|---|---|---|---|---|---|
– | – | – | ||||
2.33 | 2.34 | 2.33 | ||||
2.31 | 2.32 | 2.32 | ||||
2.31 | 2.30 | 2.30 | ||||
Order | Order | Order | ||||
– | – | – | ||||
2.52 | 2.51 | 2.52 | ||||
2.51 | 2.50 | 2.50 | ||||
2.49 | 2.49 | 2.49 |
Order | Order | Order | ||||
---|---|---|---|---|---|---|
– | – | – | ||||
2.32 | 2.34 | 2.35 | ||||
2.30 | 2.32 | 2.34 | ||||
2.28 | 2.30 | 2.33 | ||||
Order | Order | Order | ||||
– | – | – | ||||
2.51 | 2.51 | 2.51 | ||||
2.50 | 2.50 | 2.50 | ||||
2.49 | 2.49 | 2.49 |
Degrees of Freedom in | Evaluation of and | Construction of FE Functions and | Construction of FE Functions with Discrete Fractional Derivatives by (18) and (19) | Total | |
---|---|---|---|---|---|
48.1 s | 3.78 ms | 6.98 ms | 10.9 ms | ||
218 s | 19.5 ms | 618 ms | 638 ms | ||
599 s | 84.4 ms | 7.23 s | 7.32 s | ||
2 ms | 2.71 s | 111 s | 114 s | ||
7.55 ms | 37.1 s | 1902 s | 1939 s |
Serial Algorithm | Parallel Ensemble Algorithm | Acceleration Rate | |
---|---|---|---|
1 | 2.68 | – | – |
2 | 6.81 | 3.71 | 1.83 |
5 | 13.45 | 5.15 | 2.61 |
10 | 24.52 | 6.51 | 3.76 |
50 | 120.15 | 28.04 | 4.28 |
100 | 276.73 | 53.45 | 5.18 |
500 | 1470.68 | 223.14 | 6.59 |
1000 | 2823.43 | 419.69 | 6.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berdyshev, A.; Baigereyev, D.; Boranbek, K. Numerical Method for Fractional-Order Generalization of the Stochastic Stokes–Darcy Model. Mathematics 2023, 11, 3763. https://doi.org/10.3390/math11173763
Berdyshev A, Baigereyev D, Boranbek K. Numerical Method for Fractional-Order Generalization of the Stochastic Stokes–Darcy Model. Mathematics. 2023; 11(17):3763. https://doi.org/10.3390/math11173763
Chicago/Turabian StyleBerdyshev, Abdumauvlen, Dossan Baigereyev, and Kulzhamila Boranbek. 2023. "Numerical Method for Fractional-Order Generalization of the Stochastic Stokes–Darcy Model" Mathematics 11, no. 17: 3763. https://doi.org/10.3390/math11173763
APA StyleBerdyshev, A., Baigereyev, D., & Boranbek, K. (2023). Numerical Method for Fractional-Order Generalization of the Stochastic Stokes–Darcy Model. Mathematics, 11(17), 3763. https://doi.org/10.3390/math11173763