A Regional Catastrophe Bond Pricing Model and Its Application in Indonesia’s Provinces
Abstract
:1. Introduction
- This country is geologically the fifth most catastrophe-prone country in the world based on The International Disaster Database. Geologically, this country is traversed by three major plate confluences and is located between two continents and two oceans.
- Based on The International Disaster Database, among the world’s top five most catastrophe-prone countries, Indonesia has not had a history of issuing catastrophe bonds. Hence, it is very interesting to estimate.
2. A Brief RCB Structure Explanation
3. Modeling Framework
3.1. Mathematical Notations
- (a)
- Triple is a probability space of catastrophe aggregate loss, where represents sample space, represents -algebra of subsets of , and represents a probability measure on .
- (b)
- is a positive integer representing a country’s many administrative regions.
- (c)
- is the set of positive integers up to , representing the order index of the administrative regions of a country.
- (d)
- is a positive integer representing the term of the RCB in years.
- (e)
- is the set of positive integers up to , representing the year index.
- (f)
- represents the number of catastrophes that occurred in the -th administration until time .
- (g)
- is the set of nonnegative integers up to , representing the catastrophe sequence index that occurred in the -th administrative region until time .
- (h)
- represents the -th catastrophe loss in the -th administrative region.
- (i)
- represents the aggregate catastrophe loss in the -th administrative region until time .
- (j)
- represents the constant nominal interest rate in the -th administrative region.
- (k)
- is the set of positive real numbers, representing the constant inflation rate in the -th administrative region.
- (l)
- represents the constant coupon value in year of the RCB in the -th administrative region.
- (m)
- represents the redemption value of the RCB in the -th administrative region on the maturity date.
- (n)
- represents the price of a zero-coupon RCB with a term of years in the -th administrative region.
- (o)
- represents the price of a coupon-paying RCB with a term of years in the -th administrative region.
- (p)
- is the number of aggregate loss intervals for determining claims.
- (q)
- is the set of positive integers up to , representing the order of the aggregate loss interval index.
- (r)
- is an increasing sequence representing the threshold value of the aggregate catastrophic losses on the RCB. The values of these variables are generally different for each country and adjusted for historical data on catastrophe losses in that country.
- (s)
- is a descending sequence representing the set of payment proportions of coupon and redemption value on the RCB. The maximum value of is 1. Meanwhile, the minimum value of can be adjusted according to the risk aversion tendency of the investor. For example, if the investor does not want to lose the coupon and the redemption value is more than 0.5, the minimum value is 0.5.
3.2. Regional Catastrophic Aggregate Loss Model via a Compound Poisson Process
3.3. Regional Catastrophe Bond Pricing Model
3.4. Approximation Methods to Compute the CDF Value of
- (a)
- If and , the GIG distribution can be applied to more accurately determine the CDF value of .
- (b)
- If and , the IG distribution can be applied to more accurately determine the CDF value of .
4. Application Model in Indonesia’s Provinces
4.1. Brief Description of the Data
4.2. Determinating Single Catastrophic Loss Distribution
- The data have extreme values in the right tail of the histogram, as shown in Figure 2. In other words, the tail of the distribution is fatter on the right.
- The data have a positive skewness, namely 0.5201. It is because the data are spread out more on the left than the average. This characteristic also aligns with the previous characteristic, where data with a fat right tail of the distribution generally have positive skewness [30].
4.3. Estimated Regional Catastrophe Bond Prices in Each Province
5. Discussion
5.1. The Effect of the Inflation Rate on RCB Prices
5.2. The Effect of the Nonbinary Payment Scheme on RCB Prices
5.3. The Effect of Provincial Catastrophe Intensity in Indonesia on RCB Prices
5.4. The Effect of Geographical Location of Provinces in Indonesia on RCB Prices
5.5. The Effect of the RCB Term on RCB Prices
5.6. Comparation of Catastrophe Loss in SCBs and RCBs
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nowak, P.; Romaniuk, M. Valuing Catastrophe Bonds Involving Correlation and CIR Interest Rate Model. Comput. Appl. Math. 2018, 37, 365–394. [Google Scholar] [CrossRef]
- Born, P.; Viscusi, W.K. The Catastrophic Effects of Natural Disasters on Insurance Markets. J. Risk Uncertain. 2006, 33, 55–72. [Google Scholar] [CrossRef]
- Zimbidis, A.A.; Frangos, N.E.; Pantelous, A.A. Modeling Earthquake Risk via Extreme Value Theory and Pricing the Respective Catastrophe Bonds. ASTIN Bull. 2007, 37, 163–183. [Google Scholar] [CrossRef]
- Sukono; Juahir, H.; Ibrahim, R.A.; Saputra, M.P.A.; Hidayat, Y.; Prihanto, I.G. Application of Compound Poisson Process in Pricing Catastrophe Bonds: A Systematic Literature Review. Mathematics 2022, 10, 2668. [Google Scholar] [CrossRef]
- Coronese, M.; Lamperti, F.; Keller, K.; Chiaromonte, F.; Roventini, A. Evidence for Sharp Increase in the Economic Damages of Extreme Natural Disasters. Proc. Natl. Acad. Sci. USA 2019, 116, 21450–21455. [Google Scholar] [CrossRef]
- Anggraeni, W.; Supian, S.; Sukono; Halim, N.B.A. Earthquake Catastrophe Bond Pricing Using Extreme Value Theory: A Mini-Review Approach. Mathematics 2022, 10, 4196. [Google Scholar] [CrossRef]
- Ibrahim, R.A.; Sukono, S.; Napitupulu, H.; Ibrahim, R.I.; Johansyah, M.D.; Saputra, J. Estimating Flood Catastrophe Bond Prices Using Approximation Method of the Loss Aggregate Distribution: Evidence from Indonesia. Decis. Sci. Lett. 2023, 12, 179–190. [Google Scholar] [CrossRef]
- Painter, M. An Inconvenient Cost: The Effects of Climate Change on Municipal Bonds. J. Financ. Econ. 2020, 135, 468–482. [Google Scholar] [CrossRef]
- Schultz, P. The Market for New Issues of Municipal Bonds: The Roles of Transparency and Limited Access to Retail Investors. J. Financ. Econ. 2012, 106, 492–512. [Google Scholar] [CrossRef]
- Herrmann, M.; Hibbeln, M. Trading and Liquidity in the Catastrophe Bond Market. J. Risk Insur. 2023, 90, 283–328. [Google Scholar] [CrossRef]
- Schwarcz, S.L. Catastrophe Bonds, Pandemics, and Risk Securitization. SSRN Electron. J. 2020. [Google Scholar] [CrossRef]
- Ando, S.; Fu, C.; Roch, F.; Wiriadinata, U. Sovereign Climate Debt Instruments: An Overview of the Green and Catastrophe Bond Markets. Staff Clim. Notes 2022, 2022, 1–28. [Google Scholar] [CrossRef]
- Braun, A.; Herrmann, M.; Hibbeln, M.T. Common Risk Factors in the Cross Section of Catastrophe Bond Returns. SSRN Electron. J. 2022. [Google Scholar] [CrossRef]
- Härdle, W.K.; Cabrera, B.L. Calibrating CAT Bonds for Mexican Earthquakes. J. Risk Insur. 2010, 77, 625–650. [Google Scholar] [CrossRef]
- Shao, J.; Pantelous, A.; Papaioannou, A.D. Catastrophe Risk Bonds with Applications to Earthquakes. Eur. Actuar. J. 2015, 5, 113–138. [Google Scholar] [CrossRef]
- Karagiannis, N.; Assa, H.; Pantelous, A.A.; Turvey, C.G. Modelling and Pricing of Catastrophe Risk Bonds with a Temperature-Based Agricultural Application. Quant. Financ. 2016, 16, 1949–1959. [Google Scholar] [CrossRef]
- Hofer, L.; Zanini, M.A.; Gardoni, P. Risk-Based Catastrophe Bond Design for a Spatially Distributed Portfolio. Struct. Saf. 2020, 83, 101908. [Google Scholar] [CrossRef]
- Mistry, H.K.; Lombardi, D. Pricing Risk-Based Catastrophe Bonds for Earthquakes at an Urban Scale. Sci. Rep. 2022, 12, 9729. [Google Scholar] [CrossRef]
- Vakili, W.; Ghaffari-Hadigheh, A. CAT Bond Pricing in Uncertain Environment. Iran. J. Manag. Stud. 2022, 15, 347–364. [Google Scholar]
- Anggraeni, W.; Supian, S.; Sukono; Halim, N.A. Single Earthquake Bond Pricing Framework with Double Trigger Parameters Based on Multi Regional Seismic Information. Mathematics 2023, 11, 689. [Google Scholar] [CrossRef]
- Mistry, H.K.; Lombardi, D. A Stochastic Exposure Model for Seismic Risk Assessment and Pricing of Catastrophe Bonds. Nat. Hazards 2023, 117, 803–829. [Google Scholar] [CrossRef]
- Kierzkowski, H. A Generalization of the Fisher Equation. Econ. Rec. 1979, 55, 261–266. [Google Scholar] [CrossRef]
- Groenewold, N. The Adjustment of the Real Interest Rate to Inflation. Appl. Econ. 1989, 21, 947–956. [Google Scholar] [CrossRef]
- Carmichael, J.; Stebbing, P.W. Fisher’s Paradox and the Theory of Interest. Am. Econ. Rev. 1983, 73, 619–630. [Google Scholar]
- Ibrahim, R.A.; Sukono; Napitupulu, H.; Ibrahim, R.I. How to Price Catastrophe Bonds for Sustainable Earthquake Funding? A Systematic Review of the Pricing Framework. Sustainability 2023, 15, 7705. [Google Scholar] [CrossRef]
- Chaubey, Y.P.; Garrido, J.; Trudeau, S. On the Computation of Aggregate Claims Distributions: Some New Approximations. Insur. Math. Econ. 1998, 23, 215–230. [Google Scholar] [CrossRef]
- Reijnen, R.; Albers, W.; Kallenberg, W.C.M. Approximations for Stop-Loss Reinsurance Premiums. Insur. Math. Econ. 2005, 36, 237–250. [Google Scholar] [CrossRef]
- Chao, W.; Zou, H. Multiple-Event Catastrophe Bond Pricing Based on CIR-Copula-POT Model. Discret. Dyn. Nat. Soc. 2018, 2018, 5068480. [Google Scholar] [CrossRef]
- Cummins, J.D.; Weiss, M.A. Convergence of Insurance and Financial Markets: Hybrid and Securitized Risk-Transfer Solutions. J. Risk Insur. 2009, 76, 493–545. [Google Scholar] [CrossRef]
- Ma, Z.-G.; Ma, C.-Q. Pricing Catastrophe Risk Bonds: A Mixed Approximation Method. Insur. Math. Econ. 2013, 52, 243–254. [Google Scholar] [CrossRef]
- Cummins, J.D. CAT Bonds and Other Risk-Linked Securities: State of the Market and Recent Developments. SSRN Electron. J. 2007. [Google Scholar] [CrossRef]
- Gunardi, G.; Setiawan, E.P. Valuation of Indonesian Catastrophic Earthquake Bonds with Generalized Extreme Value (GEV) Distribution and Cox-Ingersoll-Ross (CIR) Interest Rate Model. In Proceedings of the 2014 International Conference on Actuarial Science and Statistics, Bandung, Indonesia, 21–23 October 2015; AIP Conference Proceedings. pp. 1–14. [Google Scholar]
- Deng, G.; Liu, S.; Li, L.; Deng, C.; Yu, W. Research on the Pricing of Global Drought Catastrophe Bonds. Math. Probl. Eng. 2020, 2020, 3898191. [Google Scholar] [CrossRef]
- Ibrahim, R.A.; Sukono; Napitupulu, H. Multiple-Trigger Catastrophe Bond Pricing Model and Its Simulation Using Numerical Methods. Mathematics 2022, 10, 1363. [Google Scholar] [CrossRef]
- Sukono; Ibrahim, R.A.; Saputra, M.P.A.; Hidayat, Y.; Juahir, H.; Prihanto, I.G.; Halim, N.B.A. Modeling Multiple-Event Catastrophe Bond Prices Involving the Trigger Event Correlation, Interest, and Inflation Rates. Mathematics 2022, 10, 4685. [Google Scholar] [CrossRef]
- Burnecki, K.; Giuricich, M.N.; Palmowski, Z. Valuation of Contingent Convertible Catastrophe Bonds—The Case for Equity Conversion. Insur. Math. Econ. 2019, 88, 238–254. [Google Scholar] [CrossRef]
- Chao, W. Valuing Multirisk Catastrophe Reinsurance Based on the Cox–Ingersoll–Ross (CIR) Model. Discret. Dyn. Nat. Soc. 2021, 2021, 8818486. [Google Scholar] [CrossRef]
- Muttaqy, F.; Dian Nugraha, A.; Syuhada, S.; Mori, J.; Tyasbudi Puspito, N.; Trisnia Sasmi, A.; Supendi, P.; Rohadi, S. Anisotropy Variations in the Continental Crust of Central—East Java Region, Indonesia from Local Shear Wave Splitting. J. Asian Earth Sci. 2023, 249, 105632. [Google Scholar] [CrossRef]
- Setiawan, A.; Zulfakriza, Z.; Nugraha, A.D.; Rosalia, S.; Priyono, A.; Widiyantoro, S.; Sahara, D.P.; Marjiyono, M.; Setiawan, J.H.; Lelono, E.B.; et al. Delineation of Sedimentary Basin Structure beneath the Banyumas Basin, Central Java, Indonesia, Using Ambient Seismic Noise Tomography. Geosci. Lett. 2021, 8, 31. [Google Scholar] [CrossRef]
- Hall, R. Late Jurassic–Cenozoic Reconstructions of the Indonesian Region and the Indian Ocean. Tectonophysics 2012, 570–571, 1–41. [Google Scholar] [CrossRef]
Region | Country | Year | Face Value | Special-Purpose Vehicles |
---|---|---|---|---|
Florida | The United States | 2013 | 20 million USD | Sunshine Re 2013-1 |
Los Angeles | The United States | 2020 | 50 million USD | Power Protective Re Ltd. |
California | The United States | 2020 | 775 million USD | Swiss Re Capital Market |
Authors | Year | Main Method (s) | Application Location | Involving Factor | |
---|---|---|---|---|---|
Inflation Rate | Nonbinary Payment Scheme | ||||
Hardle and Cabrera [14] | 2010 | Nonhomogeneous compound Poisson process (NHCPP), peaks over threshold (POT) method | Three zones in Mexico | ||
Shao et al. [15] | 2015 | Block maxima (BM) method, autoregressive-integrated-moving-average (ARIMA) model, Cox–Ingersoll–Ross (CIR) model | California, The United States | ||
Karagiannis et al. [16] | 2016 | Indifference utility pricing method | Mashhad and Tabriz, Iran | ||
Hofer et al. [17] | 2020 | NHCPP, CIR model, ground motion prediction equation | All provinces in Italy | ||
Mistry and Lombardi [18] | 2022 | Homogeneous compound Poisson process (HCPP), CIR model, high spatial resolution hazard and exposure model | Benevento, Italy | ||
Vakili and Ghaffari-Hadigheh [19] | 2022 | Uncertainty theory, renewal theory, uncertain optimization problem | A province in Sweden | ||
Anggraeni et al. [20] | 2023 | POT method, HCPP, copula, Sign’s fuzzy time series | West Java, Indonesia | ||
Mistry and Lombardi [21] | 2023 | Stochastic exposure model, Monte Carlo, CIR model, NHCPP | Ten provinces in Southern Italy | ||
This Study | 2023 | Homogeneous compound Poisson process (HCPP), Fisher equation, distribution approximation methods of HCPP | All provinces in Indonesia |
Approximation Distribution | Additional | |
---|---|---|
Inverse-Gaussian (IG) | ||
Gamma Inverse-Gaussian (GIG) | where |
Province Name | Annual Catastrophe Intensity Data | Annual Catastrophe Loss Data | |||
---|---|---|---|---|---|
Average (Catastrophe per Year) | Deviation Standard (Catastrophe per Year) | Average (IDR) | Deviation Standard (IDR) | ||
1 | Aceh | 116.7857 | 11.2144 | 857,252,482,319 | 76,525 |
2 | North Sumatra | 82.7143 | 9.6839 | 523,628,143,681 | 64,590 |
3 | West Sumatra | 80.6429 | 9.0323 | 486,690,554,987 | 63,777 |
4 | Riau | 32.0000 | 6.5359 | 228,854,455,832 | 40,201 |
5 | Bengkulu | 16.5714 | 3.4080 | 109,600,444,496 | 28,831 |
6 | South Sumatra | 79.1429 | 8.9780 | 581,464,497,741 | 63,046 |
7 | Jambi | 35.2143 | 5.7515 | 254,831,254,753 | 42,200 |
8 | Lampung | 38.1429 | 4.1905 | 287,663,127,530 | 44,034 |
9 | Bangka Belitung | 28.6429 | 5.7483 | 188,236,815,795 | 38,088 |
10 | Riau Islands | 15.6429 | 3.7784 | 97,198,278,270 | 28,010 |
11 | Banten | 44.7143 | 6.6722 | 332,048,721,239 | 47,577 |
12 | West Java | 399.5714 | 21.1141 | 3,531,755,496,825 | 141,757 |
13 | Jakarta | 21.4286 | 3.1355 | 183,847,909,889 | 32,821 |
14 | Central Java | 651.3571 | 24.8680 | 5,926,026,180,651 | 180,733 |
15 | Yogyakarta | 38.5000 | 5.0534 | 237,933,092,079 | 44,209 |
16 | East Java | 309.7143 | 18.7278 | 3,331,490,938,395 | 124,926 |
17 | West Borneo | 34.2143 | 6.0184 | 247,048,789,693 | 41,350 |
18 | Central Borneo | 30.5000 | 4.9356 | 173,082,883,748 | 39,222 |
19 | South Borneo | 63.0714 | 7.0262 | 510,616,615,466 | 56,293 |
20 | East Borneo | 56.2143 | 8.8474 | 415,469,352,173 | 53,234 |
21 | North Sulawesi | 21.5000 | 4.8634 | 141,941,492,725 | 32,927 |
22 | Gorontalo | 14.3571 | 2.5258 | 89,175,035,348 | 26,951 |
23 | Central Sulawesi | 29.7857 | 6.5390 | 179,787,945,043 | 38,718 |
24 | West Sulawesi | 10.2857 | 3.1517 | 62,454,225,488 | 22,811 |
25 | Southeast Sulawesi | 35.7143 | 6.1401 | 267,424,228,963 | 42,419 |
26 | South Sulawesi | 82.7143 | 11.5024 | 375,321,921,725 | 64,492 |
27 | Bali | 38.7143 | 6.8257 | 404,472,127,202 | 44,021 |
28 | West Nusa Tenggara | 41.5000 | 4.7700 | 279,172,663,514 | 45,660 |
29 | East Nusa Tenggara | 45.6429 | 4.5852 | 256,457,830,690 | 48,051 |
30 | Maluku | 14.7857 | 4.0221 | 91,623,184,368 | 27,406 |
31 | North Maluku | 10.7143 | 3.9969 | 92,537,413,931 | 23,291 |
32 | West Papua | 3.9286 | 2.7408 | 26,734,567,196 | 14,058 |
33 | Papua | 11.0714 | 5.7158 | 85,329,669,575 | 23,689 |
Distribution Name | Additional | ||
---|---|---|---|
Burr | |||
Fréchet | |||
Gamma * | |||
Log-Logistic | |||
Pareto | |||
Weibull |
Distribution Name | Parameter Estimators |
---|---|
Burr | |
Fréchet | |
Gamma | |
Log-Logistic | |
Pareto | |
Weibull |
Distribution Name | Kolmogorov–Smirnov Test | Anderson–Darling Test | Chi-Square Test | ||||||
---|---|---|---|---|---|---|---|---|---|
Statistic Value | Critical Value | Rejected? | Statistic Value | Critical Value | Rejected? | Statistic Value | Critical Value | Rejected? | |
Burr | 0.0309 | 0.0607 | No | 0.5284 | 2.5018 | No | 4.0551 | 15.5071 | No |
Fréchet | 0.0795 | Yes | 7.3995 | Yes | 40.6381 | Yes | |||
Gamma | 0.0195 | No | 0.2883 | No | 3.5535 | No | |||
Log-Logistic | 0.0388 | No | 0.8078 | No | 8.8835 | No | |||
Pareto | 0.3418 | Yes | 105.9521 | Yes | 669.3321 | Yes | |||
Weibull | 0.0748 | Yes | 7.0395 | Yes | 23.0932 | Yes |
Variable | Value |
---|---|
102,159,144,761 IDR | |
220,730,927,825 IDR | |
280,870,756,317 IDR | |
501,046,191,274 IDR | |
5,926,026,180,651 IDR | |
0.9 | |
0.8 | |
0.7 | |
0.6 | |
0.5 | |
1 IDR | |
0.05 IDR | |
6% | |
4% | |
1 Year |
Chosen Method | ||
---|---|---|
1 | GIG | |
2 | GIG | |
3 | GIG | |
4 | GIG | |
5 | GIG | |
6 | GIG | |
7 | GIG | |
8 | GIG | |
9 | GIG | |
10 | GIG | |
11 | GIG | |
12 | GIG | |
13 | GIG | |
14 | GIG | |
15 | GIG | |
16 | GIG | |
17 | GIG | |
18 | GIG | |
19 | GIG | |
20 | GIG | |
21 | GIG | |
22 | GIG | |
23 | GIG | |
24 | GIG | |
25 | GIG | |
26 | GIG | |
27 | GIG | |
28 | GIG | |
29 | GIG | |
30 | GIG | |
31 | GIG | |
32 | GIG | |
33 | GIG |
Province Name | Estimated Zero-Coupon RCB Price (IDR) | Estimated Coupon-Paying RCB Price (IDR) | |
---|---|---|---|
1 | Aceh | 0.5887 | 0.6181 |
2 | North Sumatra | 0.5994 | 0.6294 |
3 | West Sumatra | 0.6041 | 0.6343 |
4 | Riau | 0.8236 | 0.8647 |
5 | Bengkulu | 0.9149 | 0.9606 |
6 | South Sumatra | 0.6082 | 0.6386 |
7 | Jambi | 0.7915 | 0.8311 |
8 | Lampung | 0.7627 | 0.8008 |
9 | Bangka Belitung | 0.8525 | 0.8951 |
10 | Riau Islands | 0.9233 | 0.9694 |
11 | Banten | 0.7134 | 0.7491 |
12 | West Java | 0.5887 | 0.6181 |
13 | DKI Jakarta | 0.8873 | 0.9317 |
14 | Central Java | 0.5887 | 0.6181 |
15 | D.I. Yogyakarta | 0.7593 | 0.7973 |
16 | East Java | 0.5887 | 0.6181 |
17 | West Kalimantan | 0.8016 | 0.8417 |
18 | Central Kalimantan | 0.8374 | 0.8792 |
19 | South Kalimantan | 0.6724 | 0.7060 |
20 | East Kalimantan | 0.6856 | 0.7199 |
21 | North Sulawesi | 0.8871 | 0.9314 |
22 | Gorontalo | 0.9361 | 0.9829 |
23 | Central Sulawesi | 0.8435 | 0.8857 |
24 | West Sulawesi | 0.9714 | 1.0200 |
25 | Southeast Sulawesi | 0.7865 | 0.8258 |
26 | South Sulawesi | 0.5994 | 0.6294 |
27 | Bali | 0.7574 | 0.7952 |
28 | West Nusa Tenggara | 0.7340 | 0.7707 |
29 | East Nusa Tenggara | 0.7089 | 0.7443 |
30 | Maluku | 0.9317 | 0.9783 |
31 | North Maluku | 0.9689 | 1.0173 |
32 | West Papua | 0.9722 | 1.0208 |
33 | Papua | 0.9665 | 1.0148 |
Province Name | Estimated Zero-Coupon RCB Price (IDR) | Estimated Coupon-Paying RCB Price (IDR) | |
---|---|---|---|
1 | Central Java | 0.5887 | 0.6181 |
2 | East Java | 0.5887 | 0.6181 |
3 | West Java | 0.5887 | 0.6181 |
4 | Aceh | 0.5887 | 0.6181 |
5 | North Sumatra | 0.5994 | 0.6294 |
6 | South Sulawesi | 0.5994 | 0.6294 |
7 | West Sumatra | 0.6041 | 0.6343 |
8 | South Sumatra | 0.6082 | 0.6386 |
9 | South Kalimantan | 0.6724 | 0.7060 |
10 | East Kalimantan | 0.6856 | 0.7199 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sukono; Napitupulu, H.; Riaman; Ibrahim, R.A.; Johansyah, M.D.; Hidayana, R.A. A Regional Catastrophe Bond Pricing Model and Its Application in Indonesia’s Provinces. Mathematics 2023, 11, 3825. https://doi.org/10.3390/math11183825
Sukono, Napitupulu H, Riaman, Ibrahim RA, Johansyah MD, Hidayana RA. A Regional Catastrophe Bond Pricing Model and Its Application in Indonesia’s Provinces. Mathematics. 2023; 11(18):3825. https://doi.org/10.3390/math11183825
Chicago/Turabian StyleSukono, Herlina Napitupulu, Riaman, Riza Andrian Ibrahim, Muhamad Deni Johansyah, and Rizki Apriva Hidayana. 2023. "A Regional Catastrophe Bond Pricing Model and Its Application in Indonesia’s Provinces" Mathematics 11, no. 18: 3825. https://doi.org/10.3390/math11183825
APA StyleSukono, Napitupulu, H., Riaman, Ibrahim, R. A., Johansyah, M. D., & Hidayana, R. A. (2023). A Regional Catastrophe Bond Pricing Model and Its Application in Indonesia’s Provinces. Mathematics, 11(18), 3825. https://doi.org/10.3390/math11183825