Robust Design Problem for Multi-Source Multi-Sink Flow Networks Based on Genetic Algorithm Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Notations
- Network notations:
np | No. of paths |
nc | No. of arcs |
v | No. of nodes |
σ | No. of sources |
θ | No. of sinks |
A | The set of arcs {a_b│1 ≤ b ≤ nc} |
S | The set of source node {s_1,s_2,…,s_σ} |
T | The set of sink node {t_1,t_2,…,t_θ} |
MP | Minimal path |
MPi, j, k | The kth minimal path from source i to sink j |
m | No. of resources. |
sdw,j | The demand for resource w at sink node tj |
DD | The demand DD = {sdw,jǀ1 ≤ w ≤ m, 1≤ j ≤ θ} |
srw,i | The maximum quantity of resource w that source node si can supply |
RR | The resource RR = {srw,iǀ1≤ w ≤ m, 1 ≤ i ≤ σ} |
Mi | Maximum capacity of an arc i |
F | Flow vector defined as F = (f_1,1,1,1,f_1,1,2,1 …, f_(i,j,k_(i,j,) 1), …, f_(i,j,k_(i,j),m), …,f_(σ,θ,k_(σ,θ),m)), where f_(i,j,k,w) represents the flow quantity of resource w on MP_(i,j,k) |
NF | Length of the flow vector, NF = np × m |
RS | The system reliability |
- Parameters of the outer GA:
NP1 | Number of chromosomes |
NG1 | Number of genes equals to nc |
MG1 | The maximum number of generations |
Cr1 | The crossover rate |
Mu1 | The mutation rate |
- Parameters of the inner GA:
NP2 | Number of chromosomes |
NG2 | Number of genes equals to NF |
MG2 | The maximum number of generations |
Cr2 | The crossover rate |
Mu2 | The mutation rate |
X | Capacity vector, X = (x_1,x_2,…,x_neq) |
RX | The reliability of the capacity vectors |
2.2. Assumptions
- The flow conservation law must apply to the flow network.
- The arcs have capacities that are statistically independent.
- The capacity of an arc is an integer-valued random variable, which takes values 0 < 1 < 2 <…< Me according to a given distribution.
- The flow along a path does not exceed its maximum capacity of that path.
2.3. The Robust Design Problem for MMSFNs: Definitions
- Coverage set
- Structural impact
- Critical edge
- The capacity assignment
- Probabilities for each edge
2.4. MMSFN Problem Formulation
2.4.1. First Subproblem
2.4.2. Second Subproblem
2.5. The Proposed Approach
2.5.1. The Outer GA
Representation
Initial Population
Fitness Function
Algorithm 1: Fitness evaluation |
Selection
Algorithm 2: Roulette wheel algorithm |
Begin //CSum stands for the commutative sum Generate number random Generate number random |
Crossover
Mutation
Algorithm 3: Genetic algorithm |
Generate a random number rm [0,1] if rm then { for i = 1 to nc, do . End for } |
2.5.2. The Inner GA
Representation
Fitness Function
Algorithm 4: Fitness function |
Begin Calculate the fitness value for The End |
Selection
Algorithm 5: Roulette wheel algorithm |
Begin Generate number random Generate number random |
Crossover
Mutation
Algorithm 6: Mutation mechanism |
Generate a random number rm [0,1] if rm then { for i = 1 to NF, do , the maximum value can be assigned to F(i), [2]. End for } |
Evaluating Rs
2.6. The Whole Algorithm of the Proposed Approach
Algorithm 7: The whole algorithm of the proposed approach |
Start Input the network information, such as minimal path, demand, resources, MG1, NP1, NG1, Cr1, Mu1, MG2, NP2, NG2, Cr2, Mu2. Start outer GAGenerate the initial population randomly with size . Evaluate the initial population. While , do While , do Select two chromosomes. Generate new offspring after applying crossover and mutation. end do Evaluate the current population. Save the best solution to M. end do Report the best solution found. Start inner GA Generate the initial population randomly with size . Evaluate the initial population. While , do While , do Select two chromosomes. Generate new offspring after applying crossover and mutation. end do Evaluate the current population. Save the best solution to F. end do Report the optimal lowers found. End inner GA Calculate the system reliability Rs. End outer GA End |
3. Results and Discussion
3.1. Case1: Network with Three Sources and Two Sinks
3.2. Case2: Network with Two Sources and Two Sinks
3.3. Case3: Network with Two Sources and Three Sinks
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hassan, M.R. Maximizing reliability of the capacity vector for multi-source multi-sink stochastic-flow networks subject to an assignment budget. J. Ind. Manag. Optim. 2021, 17, 1253–1267. [Google Scholar] [CrossRef]
- Hassan, M.R. System Reliability Optimization of Multi-Source Multi-Sink Stochastic Flow Networks with Budget Constraint. Int. J. Reliab. Qual. Saf. Eng. 2021, 28, 2150025. [Google Scholar] [CrossRef]
- Forghani-Elahabad, M.; Kagan, N. Reliability evaluation of a stochastic-flow network in terms of minimal paths with budget constraint. IISE Trans. 2018, 51, 547–558. [Google Scholar] [CrossRef]
- Bobbio, A.; Terruggia, R.; Ciancamerla, E.; Minichino, M. Reliability analysis of multi-source multi-sink critical interacting systems. In Proceedings of the 2011 3rd International Workshop on Dependable Control of Discrete Systems, Saarbruecken, Germany, 15–17 June 2011; pp. 127–132. [Google Scholar] [CrossRef]
- Sahinoglu, M.; Rice, B. Network reliability evaluation. In WIREs Computational Statistics; John Wiley & Sons: Hoboken, NJ, USA, 2010; Volume 2, pp. 189–211. [Google Scholar]
- Hamed, A.Y.; Alkinani, M.H.; Hassan, M.R. A Genetic Algorithm to Solve Capacity Assignment Problem in a Flow Network. Comput. Mater. Contin. 2020, 64, 1579–1586. [Google Scholar] [CrossRef]
- Hassan, M. Solving Flow Allocation Problems and Optimizing System Reliability of Multi-Source Multi-Sink Stochastic Flow Network. Int. Arab. J. Inf. Technol. (IAJIT) 2016, 13, 477–483. [Google Scholar]
- Liu, Q.; Zhang, H.; Ma, X.; Zhao, Q. Genetic Algorithm-based Study on Flow Allocation in a Multicommodity Stochastic-flow Network with Unreliable Nodes. In Proceedings of the Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD 2007), Qingdao, China, 30 July 2007–1 August 2007; Volume 1, pp. 576–581. [Google Scholar] [CrossRef]
- Chen, S.-G. Optimal double-resource assignment for the robust design problem in multistate computer networks. Appl. Math. Model. 2014, 38, 263–277. [Google Scholar] [CrossRef]
- Atzori, L.; Raccis, A. Network Capacity Assignment for Multicast Services Using Genetic Algorithms. IEEE Commun. Lett. 2004, 8, 403–405. [Google Scholar] [CrossRef]
- Yang, G. Life Cycle Reliability Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar] [CrossRef]
- Büsing, C.; Koster, A.M.C.A.; Schmitz, S. Robust minimum cost flow problem under consistent flow constraints. Ann. Oper. Res. 2021, 312, 691–722. [Google Scholar] [CrossRef]
- Fowlkes, W.Y.; Creveling, C.M. Engineering Methods for Robust Product Design: Using Taguchi Methods in Technology and Product Development; Addison-Wesley Publishing Company: Boston, MA, USA, 1995. [Google Scholar]
- Chabrier, A.; Danna, E.; Le Pape, C.; Perron, L. Solving a Network Design Problem. Ann. Oper. Res. 2004, 130, 217–239. [Google Scholar] [CrossRef]
- Yong, K. Robust Design and Reliability. Trans. Nanjing Univ. Aeronaut. Astronaut. 1998, 15, 9–14. [Google Scholar]
- Cho, B.R.; Shin, S. Quality Improvement and Robust Design Methods to a Pharmaceutical Research and Development. Math. Probl. Eng. 2012, 2012, 193246. [Google Scholar] [CrossRef]
- Chen, S.-G. An optimal capacity assignment for the robust design problem in capacitated flow networks. Appl. Math. Model. 2012, 36, 5272–5282. [Google Scholar] [CrossRef]
- Hamdy, N.; Hassan, M.R.; Hussein, M.E. A genetic algorithm to solve the robust design problem for a Flow Network with Node Failure. Trans. Networks Commun. 2020, 8, 1–10. [Google Scholar] [CrossRef]
- Radwan, N.H.; Hassan, M.R.; Hussein, M.E. Solving the Robust Design Problem for a Two-Commodity Flow Network with Node Failure. Am. J. Eng. Appl. Sci. 2020, 13, 837–845. [Google Scholar] [CrossRef]
- Chen, S.-G.; Lin, Y.-K. An Approximate Algorithm for the Robust Design in a Stochastic-Flow Network. Commun. Stat.—Theory Methods 2010, 39, 2440–2454. [Google Scholar] [CrossRef]
- López-Prado, J.L.; Vélez, J.I.; Garcia-Llinás, G.A. Reliability Evaluation in Distribution Networks with Microgrids: Review and Classification of the Literature. Energies 2020, 13, 6189. [Google Scholar] [CrossRef]
- Al-Shaalan, A.M. Reliability Evaluation of Power Systems. In Reliability and Maintenance-An Overview of Cases; IntechOpen: London, UK, 2020. [Google Scholar]
- Niu, Y.-F.; Xu, X.-Z.; He, C.; Ding, D.; Liu, Z.-Z. Capacity Reliability Calculation and Sensitivity Analysis for a Stochastic Transport Network. IEEE Access 2020, 8, 133161–133169. [Google Scholar] [CrossRef]
- Satitsatian, S.; Kapur, K.C. An algorithm for lower reliability bounds of multistate two-terminal networks. IEEE Trans. Reliab. 2006, 55, 199–206. [Google Scholar] [CrossRef]
- Hassan, M.R.; Abdou, H. Multi-Source Multi-Sink Stochastic-Flow Networks Reliability under Time Constraints. Indian J. Sci. Technol. 2019, 12, 22. [Google Scholar] [CrossRef]
- Abed, M.H.; Tang, A.Y. Hybridizing Genetic Algorithm and Record-to-Record Travel Algorithm for Solving Uncapacitated Examination Timetabling Problem. electronic J. Comput. Sci. Inf. Technol. 2013, 4, 25–31. [Google Scholar]
- Sharma, M. Role and Working of Genetic Algorithm in Computer Science. Int. J. Comput. Appl. Inf. Technol. 2013, 2, 27–32. [Google Scholar]
- Malik, A. A Study of Genetic Algorithm and Crossover Techniques. Int. J. Comput. Sci. Mob. Comput. 2019, 8, 335–344. [Google Scholar]
- Mirjalili, S. Studies in Computational Intelligence. In Evolutionary Algorithms and Neural Networks; Springer: Berlin/Heidelberg, Germany, 2019; Volume 780. [Google Scholar]
- Lin, Y.-K. A simple algorithm for reliability evaluation of a stochastic-flow network with node failure. Comput. Oper. Res. 2001, 28, 1277–1285. [Google Scholar] [CrossRef]
- Zuo, M.J.; Tian, Z.; Huang, H.-Z. An efficient method for reliability evaluation of multistate networks given all minimal path vectors. IIE Trans. 2007, 39, 811–817. [Google Scholar] [CrossRef]
NP2 | M | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
10 | [4 | 2 | 4 | 2 | 5 | 4 | 3 | 3 | 5 | 4] | 36 | 0.973585 |
15 | [4 | 4 | 3 | 4 | 1 | 1 | 5 | 5 | 5 | 4] | 36 | 0.968533 |
20 | [5 | 3 | 3 | 3 | 3 | 1 | 4 | 5 | 4 | 5] | 36 | 0.968419 |
F | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0.8749 |
0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0.8749 |
1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0.8745 |
1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0.8407 |
0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0.8222 |
1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0.7904 |
1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.7904 |
1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0.7899 |
1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0.7594 |
1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0.7413 |
1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0.9012 |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0.9012 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0.8855 |
1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0.8855 |
1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0.8832 |
1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0.8832 |
0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0.8832 |
0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0.8120 |
1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0.8102 |
1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0.8082 |
1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0.7976 |
1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0.7976 |
1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0.7976 |
1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0.7958 |
1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0.7299 |
1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0.8760 |
1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0.8760 |
1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0.8760 |
1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0.8313 |
1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0.8313 |
1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0.8313 |
1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0.8301 |
0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0.8301 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0.8301 |
1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0.8292 |
1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0.8292 |
1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0.8222 |
1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0.8222 |
0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0.8222 |
1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0.8222 |
1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0.8210 |
1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0.8210 |
1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0.8200 |
1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0.7834 |
1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0.7834 |
NP2 | M | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10 | [15 | 16 | 4 | 17 | 4 | 18 | 9 | 11 | 14 | 9 | 9 | 19 | 10 | 14] | 169 | 0.996641 |
15 | [8 | 19 | 17 | 11 | 19 | 10 | 15 | 5 | 20 | 13 | 13 | 8 | 8 | 15] | 181 | 0.989280 |
20 | [19 | 6 | 18 | 18 | 15 | 7 | 11 | 16 | 13 | 19 | 9 | 4 | 17 | 17] | 189 | 0.999984 |
F | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 0 | 1 | 0 | 0 | 2 | 2 | 0 | 1 | 2 | 2 | 1 | 2 | 2 | 0 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 0.9916 |
1 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 0 | 2 | 0 | 2 | 0 | 0 | 2 | 1 | 2 | 1 | 1 | 0.9645 |
1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 0 | 2 | 2 | 2 | 1 | 2 | 0 | 1 | 2 | 1 | 2 | 0.8583 |
2 | 0 | 1 | 2 | 2 | 1 | 2 | 1 | 2 | 2 | 2 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | 1 | 1 | 1 | 2 | 0.8530 |
2 | 1 | 1 | 0 | 2 | 2 | 1 | 0 | 1 | 2 | 0 | 1 | 2 | 1 | 0 | 1 | 2 | 2 | 2 | 2 | 2 | 1 | 0.7601 |
2 | 1 | 2 | 1 | 1 | 0 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 0 | 1 | 2 | 2 | 0 | 2 | 2 | 1 | 0.7536 |
2 | 2 | 2 | 2 | 2 | 0 | 1 | 2 | 2 | 2 | 0 | 1 | 1 | 0 | 0 | 2 | 2 | 1 | 1 | 0 | 2 | 1 | 0.6973 |
0 | 2 | 2 | 2 | 1 | 0 | 2 | 2 | 1 | 2 | 2 | 0 | 2 | 1 | 0 | 2 | 2 | 2 | 1 | 0 | 2 | 0 | 0.6722 |
2 | 1 | 2 | 2 | 0 | 2 | 1 | 1 | 2 | 2 | 2 | 0 | 1 | 0 | 0 | 1 | 2 | 2 | 2 | 2 | 1 | 0 | 0.6591 |
0 | 2 | 2 | 1 | 2 | 0 | 2 | 1 | 1 | 1 | 2 | 0 | 1 | 2 | 1 | 0 | 2 | 2 | 0 | 2 | 2 | 2 | 0.6070 |
1 | 0 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 2 | 2 | 2 | 0.9234 |
1 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 2 | 2 | 1 | 1 | 0 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0.9210 |
0 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 0 | 0 | 1 | 2 | 2 | 0.9206 |
1 | 0 | 2 | 0 | 1 | 2 | 2 | 2 | 2 | 0 | 1 | 2 | 2 | 1 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 2 | 0.8997 |
1 | 1 | 0 | 0 | 2 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 0 | 2 | 1 | 0 | 1 | 0 | 2 | 2 | 2 | 0.8997 |
2 | 0 | 0 | 0 | 2 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 0 | 0 | 2 | 2 | 0.8997 |
2 | 0 | 1 | 1 | 0 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 1 | 2 | 0.8996 |
1 | 0 | 1 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 1 | 0 | 1 | 0 | 0 | 2 | 2 | 0.8943 |
2 | 1 | 0 | 0 | 1 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 1 | 0 | 0 | 0 | 2 | 2 | 0.8370 |
1 | 2 | 2 | 0 | 2 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 0 | 0 | 2 | 2 | 0 | 2 | 1 | 1 | 2 | 1 | 0.8333 |
2 | 2 | 1 | 0 | 1 | 1 | 1 | 2 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 0 | 1 | 0 | 2 | 2 | 0.8331 |
2 | 2 | 1 | 1 | 2 | 0 | 2 | 0 | 2 | 1 | 2 | 0 | 0 | 2 | 2 | 2 | 0 | 2 | 0 | 1 | 2 | 2 | 0.8331 |
1 | 1 | 2 | 2 | 2 | 1 | 2 | 0 | 2 | 2 | 0 | 1 | 2 | 0 | 2 | 2 | 1 | 2 | 0 | 0 | 1 | 2 | 0.8330 |
1 | 0 | 2 | 2 | 2 | 1 | 1 | 0 | 2 | 2 | 1 | 2 | 1 | 0 | 2 | 1 | 1 | 2 | 0 | 1 | 2 | 2 | 0.8263 |
1 | 1 | 2 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 0 | 0 | 2 | 1 | 2 | 2 | 1 | 0 | 1 | 2 | 0.5717 |
1 | 0 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 0 | 1 | 1 | 1 | 1 | 0 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 0.9992 |
1 | 1 | 2 | 1 | 2 | 0 | 0 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 0 | 1 | 2 | 1 | 1 | 0.9957 |
2 | 1 | 2 | 1 | 1 | 1 | 0 | 1 | 1 | 2 | 0 | 0 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 0 | 0.9957 |
2 | 0 | 2 | 0 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 0 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 0.9941 |
1 | 1 | 2 | 0 | 2 | 1 | 0 | 2 | 2 | 0 | 2 | 2 | 0 | 1 | 0 | 1 | 2 | 2 | 2 | 2 | 2 | 1 | 0.9906 |
2 | 2 | 0 | 1 | 2 | 1 | 2 | 2 | 0 | 1 | 1 | 0 | 2 | 1 | 2 | 0 | 1 | 2 | 2 | 1 | 1 | 2 | 0.9584 |
2 | 2 | 2 | 2 | 1 | 0 | 0 | 1 | 2 | 2 | 0 | 0 | 2 | 1 | 2 | 2 | 0 | 2 | 2 | 1 | 2 | 0 | 0.9566 |
2 | 2 | 0 | 2 | 2 | 0 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | 1 | 1 | 0.9526 |
1 | 1 | 2 | 0 | 1 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 2 | 1 | 0 | 2 | 2 | 1 | 2 | 0 | 2 | 1 | 0.9522 |
1 | 1 | 2 | 0 | 2 | 2 | 2 | 2 | 0 | 2 | 1 | 2 | 1 | 0 | 2 | 0 | 0 | 2 | 2 | 0 | 2 | 2 | 0.9522 |
2 | 1 | 1 | 0 | 0 | 0 | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 0 | 1 | 2 | 0.9229 |
2 | 1 | 2 | 1 | 1 | 1 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 2 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 0.9176 |
2 | 0 | 1 | 1 | 1 | 1 | 0 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 1 | 2 | 0 | 0.8803 |
0 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 0 | 2 | 1 | 2 | 0 | 2 | 1 | 1 | 2 | 0 | 2 | 0.7910 |
1 | 0 | 1 | 0 | 2 | 1 | 1 | 2 | 0 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 1 | 0 | 0.7149 |
1 | 1 | 0 | 2 | 2 | 0 | 1 | 2 | 2 | 1 | 2 | 0 | 2 | 2 | 2 | 2 | 1 | 0 | 0 | 2 | 2 | 1 | 0.7109 |
2 | 1 | 0 | 0 | 1 | 1 | 2 | 2 | 1 | 0 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 0.7105 |
1 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 0 | 0 | 2 | 2 | 0 | 1 | 0 | 1 | 2 | 0.7098 |
2 | 1 | 1 | 1 | 0 | 1 | 2 | 2 | 2 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 0 | 2 | 0 | 0 | 2 | 0 | 0.7095 |
2 | 0 | 2 | 1 | 2 | 0 | 2 | 2 | 2 | 1 | 1 | 2 | 0 | 2 | 0 | 1 | 0 | 2 | 2 | 2 | 2 | 0 | 0.6072 |
NP2 | M | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10 | [8 | 12 | 14 | 4 | 15 | 13 | 7 | 2 | 14 | 12 | 10] | 111 | 0.995669 |
15 | [12 | 6 | 12 | 14 | 5 | 9 | 12 | 6 | 12 | 14 | 9] | 111 | 0.999923 |
20 | [15 | 12 | 12 | 15 | 9 | 4 | 10 | 11 | 14 | 4 | 5] | 111 | 0.999403 |
F | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0.9595 |
1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0.9595 |
1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0.9573 |
1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0.9573 |
1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0.9573 |
1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0.9212 |
1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0.8851 |
1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0.8851 |
0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0.8851 |
1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0.8851 |
1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0.9999 |
1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0.9998 |
1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0.9962 |
0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0.9962 |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0.9962 |
0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0.9962 |
1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0.9962 |
1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0.9960 |
1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0.9039 |
1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0.9038 |
0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0.9038 |
1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0.8988 |
1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0.8988 |
1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0.8988 |
0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0.8007 |
0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0.9994 |
1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0.9994 |
1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0.9988 |
1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0.9988 |
1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0.9988 |
1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0.9988 |
1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0.9988 |
0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0.9982 |
1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0.9606 |
1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0.9600 |
1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0.9600 |
1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0.9600 |
1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0.9600 |
0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0.9600 |
1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0.9600 |
0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0.9227 |
1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0.9227 |
1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0.9227 |
1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0.9227 |
0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0.9227 |
Approach | Problem | |
---|---|---|
[1] | Maximizing reliability of the capacity vector by searching the single optimal flow vector with minimum assignment cost | 1 |
[2] | Optimal system reliability under transmission budget | 10 |
[7] | Optimal system reliability evaluation under DD | 9 |
Proposed approach | Optimal system reliability under maximum capacities (Robust Design Problem) | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boubaker, S.; Radwan, N.H.; Refaat Hassan, M.; Alsubaei, F.S.; Younes, A.; Sennary, H.A. Robust Design Problem for Multi-Source Multi-Sink Flow Networks Based on Genetic Algorithm Approach. Mathematics 2023, 11, 3902. https://doi.org/10.3390/math11183902
Boubaker S, Radwan NH, Refaat Hassan M, Alsubaei FS, Younes A, Sennary HA. Robust Design Problem for Multi-Source Multi-Sink Flow Networks Based on Genetic Algorithm Approach. Mathematics. 2023; 11(18):3902. https://doi.org/10.3390/math11183902
Chicago/Turabian StyleBoubaker, Sahbi, Noha Hamdy Radwan, Moatamad Refaat Hassan, Faisal S. Alsubaei, Ahmed Younes, and Hameda A. Sennary. 2023. "Robust Design Problem for Multi-Source Multi-Sink Flow Networks Based on Genetic Algorithm Approach" Mathematics 11, no. 18: 3902. https://doi.org/10.3390/math11183902
APA StyleBoubaker, S., Radwan, N. H., Refaat Hassan, M., Alsubaei, F. S., Younes, A., & Sennary, H. A. (2023). Robust Design Problem for Multi-Source Multi-Sink Flow Networks Based on Genetic Algorithm Approach. Mathematics, 11(18), 3902. https://doi.org/10.3390/math11183902