Using Traffic Sensors in Smart Cities to Enhance a Spatio-Temporal Deep Learning Model for COVID-19 Forecasting
Abstract
:1. Introduction
- Using a new deep learning model to combine both space and time information for short-term COVID-19 forecasting;
- Using geolocated data on the number of new COVID-19 infections to generate incidence maps;
- Using geolocated traffic data to generate traffic maps;
- Validation of the proposed model with real data in order to assess if spatio-temporal patterns can be learned and used to improve the accuracy in the forecast of the evolution of the COVID-19 pandemic for each location in a region.
2. Related Work
3. Generating Images from Sensor Data
4. Models
4.1. Combined Traffic and COVID-19 Incidence Images Model
4.2. Independent Traffic and COVID-19 Incidence Images
4.3. COVID-19 and Traffic Only Models
5. Datasets
6. Results
6.1. Parameter Optimization
- Num_filters: the number of filters used by the CNN layer. The higher the number of filters the more spatial patterns can be extracted from the input images but more input data could be needed to prevent overfitting;
- Filter_size: the convolution operation will be applied to a square region in the input image. The filter_size parameter controls the size of the area used in the convolution operation. The models in Section 4 use square filters of filter_size by filter_size that go through the input images to extract the different spatial features. The bigger the size of the filters the higher the impact of faraway locations in the input image but the lower the spatial granularity;
- Pool_size: the max pooling operation performs a summary of the output of the convolution operation. The size of the summary is controlled by the pool_size parameter.
- Num_neurons_input_LSTM: represents the number of neurons at the output of the dense layer after the max pooling layer. The output neurons provide a final summary of the spatial information for each input image at each instant of time and should be able to capture the information required by the LSTM-based RNN at the final part of the models to perform optimal estimations;
- LSTM_units: represents the number of memory units in the LSTM cells. The mission of the memory units is to store the temporal information to be able to perform temporal forecasting. The number of memory units should therefore be enough to extract temporal patterns but not bigger than required in order to minimize overfitting training effects.
6.2. Validation Results
6.3. Model Explanation
6.4. Ablation Study
7. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- El-Sadr, W.M.; Vasan, A.; El-Mohandes, A. Facing the new COVID-19 reality. N. Engl. J. Med. 2023, 388, 385–387. [Google Scholar] [PubMed]
- Rodríguez González, A.B.; Wilby, M.R.; Vinagre Díaz, J.J.; Fernández Pozo, R. Characterization of COVID-19′s impact on mobility and short-term prediction of public transport demand in a mid-size city in Spain. Sensors 2021, 21, 6574. [Google Scholar]
- James, P.; Das, R.; Jalosinska, A.; Smith, L. Smart cities and a data-driven response to COVID-19. Dialogues Hum. Geogr. 2020, 10, 255–259. [Google Scholar]
- Lyons, N.; Lăzăroiu, G. Addressing the COVID-19 crisis by harnessing Internet of Things sensors and machine learning algorithms in data-driven smart sustainable cities. Geopolit. Hist. Int. Relat. 2020, 12, 65–71. [Google Scholar]
- Hasan, A.; Putri, E.R.; Susanto, H.; Nuraini, N. Data-driven modeling and forecasting of COVID-19 outbreak for public policy making. ISA Trans. 2021, 124, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Shao, C.; Wu, M.; He, S.; Shi, Z.; Li, C.; Ye, X.; Chen, J. Leveraging Human Mobility Data for Efficient Parameter Estimation in Epidemic Models of COVID-19. IEEE Trans. Intell. Transp. Syst. 2022. [Google Scholar] [CrossRef]
- Kaddar, A.; Abta, A.; Alaoui, H.T. A comparison of delayed SIR and SEIR epidemic models. Nonlinear Anal. Model. Control 2011, 16, 181–190. [Google Scholar]
- Arino, J. Describing, modelling and forecasting the spatial and temporal spread of COVID-19: A short review. In Mathematics of Public Health; Springer International Publishing: Cham, Switzerland, 2022; pp. 25–51. [Google Scholar]
- Zhu, Y.; Chen, Y.Q. On a statistical transmission model in analysis of the early phase of COVID-19 outbreak. Stat. Biosci. 2021, 13, 1–17. [Google Scholar]
- Baldo, F.; Dall’Olio, L.; Ceccarelli, M.; Scheda, R.; Lombardi, M.; Borghesi, A.; Diciotti, S.; Milano, M. Deep learning for virus-spreading forecasting: A brief survey. arXiv 2021, arXiv:2103.02346. [Google Scholar]
- Wang, L.; Xu, T.; Stoecker, T.; Stoecker, H.; Jiang, Y.; Zhou, K. Machine learning spatio-temporal epidemiological model to evaluate Germany-county-level COVID-19 risk. Mach. Learn. Sci. Technol. 2021, 2, 035031. [Google Scholar]
- Breiman, L.; Friedman, J.; Stone, C.J.; Olshen, R.A. Classification and Regression Trees; CRC Press: Boca Raton, FL, USA, 1984. [Google Scholar]
- KI Williams, C. Gaussian Processes for Machine Learning; Taylor & Francis Group: Abingdon, UK, 2006. [Google Scholar]
- Muñoz-Organero, M. Space-Distributed Traffic-Enhanced LSTM-Based Machine Learning Model for COVID-19 Incidence Forecasting. Comput. Intell. Neurosci. 2022, 2022, 4307708. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, L.J.; Algehyne, E.A.; Usman, S.S.; Ahmad, A.; Chakraborty, C.; Mohammed, I.A. Supervised machine learning models for prediction of COVID-19 infection using epidemiology dataset. SN Comput. Sci. 2021, 2, 11. [Google Scholar] [CrossRef] [PubMed]
- Alazab, M.; Awajan, A.; Mesleh, A.; Abraham, A.; Jatana, V.; Alhyari, S. COVID-19 prediction and detection using deep learning. Int. J. Comput. Inf. Syst. Ind. Manag. Appl. 2020, 12, 168–181. [Google Scholar]
- Alakus, T.B.; Turkoglu, I. Comparison of deep learning approaches to predict COVID-19 infection. Chaos Solitons Fractals 2020, 140, 110120. [Google Scholar] [CrossRef]
- Assaf, D.; Gutman, Y.A.; Neuman, Y.; Segal, G.; Amit, S.; Gefen-Halevi, S.; Shilo, N.; Epstein, A.; Mor-Cohen, R.; Biber, A.; et al. Utilization of machine-learning models to accurately predict the risk for critical COVID-19. Intern. Emerg. Med. 2020, 15, 1435–1443. [Google Scholar] [CrossRef]
- K Abdul Hamid, A.A.; Wan Mohamad Nawi, W.I.; Lola, M.S.; Mustafa, W.A.; Abdul Malik, S.M.; Zakaria, S.; Aruchunan, E.; Zainuddin, N.H.; Gobithaasan, R.U.; Abdullah, M.T. Improvement of Time Forecasting Models Using Machine Learning for Future Pandemic Applications Based on COVID-19 Data 2020–2022. Diagnostics 2023, 13, 1121. [Google Scholar] [CrossRef]
- Sherratt, K.; Gruson, H.; Johnson, H.; Niehus, R.; Prasse, B.; Sandmann, F.; Deuschel, J.; Wolffram, D.; Abbott, S.; Ullrich, A.; et al. Predictive performance of multi-model ensemble forecasts of COVID-19 across European nations. Elife 2023, 12, e81916. [Google Scholar] [CrossRef]
- Zhou, L.; Zhao, C.; Liu, N.; Yao, X.; Cheng, Z. Improved LSTM-based deep learning model for COVID-19 prediction using optimized approach. Eng. Appl. Artif. Intell. 2023, 122, 106157. [Google Scholar] [CrossRef]
- Shahid, F.; Zameer, A.; Muneeb, M. Predictions for COVID-19 with deep learning models of lstm, gru and bi-lstm. Chaos Solitons Fractals 2020, 140, 110212. [Google Scholar] [CrossRef]
- Haviluddin, H.; Alfred, R. Multi-step CNN forecasting for COVID-19 multivariate time-series. Int. J. Adv. Intell. Inform. 2023, 9, 176–186. [Google Scholar] [CrossRef]
- Dairi, A.; Harrou, F.; Zeroual, A.; Hittawe, M.M.; Sun, Y. Comparative study of machine learning methods for COVID-19 transmission forecasting. J. Biomed. Inform. 2021, 118, 103791. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.J.; Shen, Y.; Kuo, P.H.; Chen, Y.H. Novel spatiotemporal feature extraction parallel deep neural network for forecasting confirmed cases of coronavirus disease 2019. Socio-Econ. Plan. Sci. 2020, 80, 100976. [Google Scholar] [CrossRef] [PubMed]
- Mežnar, S.; Lavrač, N.; Škrlj, B. Prediction of the effects of epidemic spreading with graph neural networks. In Complex Networks & Their Applications IX; Benito, R.M., Cherifi, C., Cherifi, H., Moro, E., Rocha, L.M., Sales-Pardo, M., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 420–431. [Google Scholar]
- Deng, S.; Wang, S.; Rangwala, H.; Wang, L.; Ning, Y. Cola-GNN: Cross-Location Attention Based Graph Neural Networks for Long-Term ILI Prediction; Association for Computing Machinery: New York, NY, USA, 2020; pp. 245–254. [Google Scholar]
- Liu, F.; Wang, J.; Liu, J.; Li, Y.; Liu, D.; Tong, J.; Li, Z.; Yu, D.; Fan, Y.; Bi, X.; et al. Predicting and analyzing the COVID-19 epidemic in China: Based on SEIRD, LSTM and GWR models. PLoS ONE 2020, 15, e0238280. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Organero, M.; Queipo-Álvarez, P. Deep Spatiotemporal Model for COVID-19 Forecasting. Sensors 2022, 22, 3519. [Google Scholar] [CrossRef] [PubMed]
- Lau, H.; Khosrawipour, V.; Kocbach, P.; Mikolajczyk, A.; Ichii, H.; Zacharski, M.; Bania, J.; Khosrawipour, T. The association between international and domestic air traffic and the coronavirus (COVID-19) outbreak. J. Microbiol. Immunol. Infect. 2020, 53, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Sokadjo, Y.M.; Atchadé, M.N. The influence of passenger air traffic on the spread of COVID-19 in the world. Transp. Res. Interdiscip. Perspect. 2020, 8, 100213. [Google Scholar] [CrossRef]
- Ayan, N.; Chaskar, S.; Seetharam, A.; Ramesh, A.; Rocha, A.A. Poster: COVID-19 Case Prediction using Cellular Network Traffic. In Proceedings of the 2021 IFIP Networking Conference (IFIP Networking), Espoo and Helsinki, Finland, 21–24 June 2021; IEEE: New York, NY, USA; pp. 1–3. [Google Scholar]
- Ghanim, M.S.; Muley, D.; Kharbeche, M. ANN-Based traffic volume prediction models in response to COVID-19 imposed measures. Sustain. Cities Soc. 2022, 81, 103830. [Google Scholar] [CrossRef]
- Li, A.; Zhao, P.; Haitao, H.; Mansourian, A.; Axhausen, K.W. How did micro-mobility change in response to COVID-19 pandemic? A case study based on spatial-temporal-semantic analytics. Comput. Environ. Urban Syst. 2021, 90, 101703. [Google Scholar] [CrossRef]
- Dudukcu, H.V.; Taskiran, M.; Taskiran, Z.G.C.; Yildirim, T. Temporal Convolutional Networks with RNN approach for chaotic time series prediction. Appl. Soft Comput. 2023, 133, 109945. [Google Scholar] [CrossRef]
- The Keras Library for Python. Available online: https://keras.io/ (accessed on 25 January 2023).
- Historic Traffic Data for the City of MADRID. Available online: https://datos.madrid.es/portal/site/egob/menuitem.c05c1f754a33a9fbe4b2e4b284f1a5a0/?vgnextoid=33cb30c367e78410VgnVCM1000000b205a0aRCRD&vgnextchannel=374512b9ace9f310VgnVCM100000171f5a0aRCRD&vgnextfmt=default (accessed on 25 January 2023).
- Location of the Traffic Sensors in the City of Madrid. Available online: https://datos.madrid.es/portal/site/egob/menuitem.c05c1f754a33a9fbe4b2e4b284f1a5a0/?vgnextoid=ee941ce6ba6d3410VgnVCM1000000b205a0aRCRD&vgnextchannel=374512b9ace9f310VgnVCM100000171f5a0aRCRD (accessed on 25 January 2023).
- COVID-19 Incidence Weekly Data for Each Primary Care Center for the Comunidad de Madrid Region. Available online: https://datos.comunidad.madrid/catalogo/dataset/covid19_tia_zonas_basicas_salud (accessed on 25 January 2023).
- Sundararajan, M.; Taly, A.; Yan, Q. Axiomatic attribution for deep networks. In Proceedings of the International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 3319–3328. [Google Scholar]
- Fryer, D.; Strümke, I.; Nguyen, H. Shapley values for feature selection: The good, the bad, and the axioms. IEEE Access 2021, 9, 144352–144360. [Google Scholar] [CrossRef]
References | Model Types | Predicted Variable |
---|---|---|
[6,12,13] | Regression Trees, Gaussian processes | Traffic volumes |
[15,16,17,18] | Shallow ML models | COVID-19 diagnoses |
[19,20] | Shallow ML models | COVID-19 incidence |
[21,22,23] | Deep ML models | COVID-19 incidence |
[11,25,26,27] | Space-time models | Mobility-enhanced COVID-19 estimations |
[30,31,32,33,34] | Shallow ML models | Mobility estimations caused by COVID-19 |
Parameter/Model | Figure 3 | Figure 5 | Figure 7 |
---|---|---|---|
Num_filters | 4 | 16 | 32 |
Filter_size | 3 | 3 | 4 |
Pool_size | 2 | 2 | 2 |
Num_neurons_input_LSTM | 8 | 8 | 16 |
LSTM_units | 16 | 16 | 32 |
Block Removed | MSE Values |
---|---|
None | 0.003242 |
CNN processing image at t-5 | 0.003245 |
CNN processing image at t-4 | 0.004514 |
CNN processing image at t-3 | 0.005416 |
CNN processing image at t-2 | 0.005744 |
CNN processing image at t-1 | 0.006095 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz-Organero, M. Using Traffic Sensors in Smart Cities to Enhance a Spatio-Temporal Deep Learning Model for COVID-19 Forecasting. Mathematics 2023, 11, 3904. https://doi.org/10.3390/math11183904
Muñoz-Organero M. Using Traffic Sensors in Smart Cities to Enhance a Spatio-Temporal Deep Learning Model for COVID-19 Forecasting. Mathematics. 2023; 11(18):3904. https://doi.org/10.3390/math11183904
Chicago/Turabian StyleMuñoz-Organero, Mario. 2023. "Using Traffic Sensors in Smart Cities to Enhance a Spatio-Temporal Deep Learning Model for COVID-19 Forecasting" Mathematics 11, no. 18: 3904. https://doi.org/10.3390/math11183904
APA StyleMuñoz-Organero, M. (2023). Using Traffic Sensors in Smart Cities to Enhance a Spatio-Temporal Deep Learning Model for COVID-19 Forecasting. Mathematics, 11(18), 3904. https://doi.org/10.3390/math11183904