Some New Estimates of Hermite–Hadamard Inequalities for Harmonical cr-h-Convex Functions via Generalized Fractional Integral Operator on Set-Valued Mappings
Abstract
:1. Introduction
2. Preliminaries
- If , Definition 4 assimilates harmonic -P-function.
- If , Definition 4 assimilates harmonic -h-Godunova–Levin function.
- If , Definition 4 assimilates harmonic -s-convex function.
- If , Definition 4 assimilates harmonic -s-Godunova–Levin function.
3. Main Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Baleanu, D.; Jajarmi, A.; Mohammadi, H. A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative. Chaos Solitons Fractals 2020, 134, 109705. [Google Scholar] [CrossRef]
- Shaked, M.; Shanthikumar, J.G. Stochastic Convexity and Its Applications. Adv. Appl. Probab. 1988, 20, 427–446. [Google Scholar] [CrossRef]
- Sunaga, T. Theory of an interval algebra and its application to numerical analysis. J. Ind. Appl. Math. 2009, 26, 125–143. [Google Scholar] [CrossRef]
- Snyder, J.M. Interval analysis for computer graphics. In Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, Chicago, IL, USA, 27–31 July 1992; pp. 121–130. [Google Scholar]
- Zhang, X.; Shabbir, K.; Afzal, W.; Xiao, H.; Lin, D. Hermite–Hadamard and Jensen-Type Inequalities via Riemann Integral Operator for a Generalized Class of Godunova–Levin Functions. J. Math. 2022, 2022, e3830324. [Google Scholar] [CrossRef]
- Wang, J.R.; Feckan, M. Fractional Hermite–Hadamard Inequalities; de Gruyter: Berlin, Germany, 2018; Volume 22. [Google Scholar]
- Işcan, I. Hermite–Hadamard’s inequalities for preinvex functions via fractional integrals and related fractional inequalities. arXiv 2012, arXiv:1204.0272. [Google Scholar]
- Pachpatte, B.G. On some inequalities for convex functions. RGMIA Res. 2003, 6, 1–9. [Google Scholar]
- Chen, F. A note on Hermite–Hadamard inequalities for products of convex functions via Riemann–Liouville fractional integrals. Italian J. Pure Appl. Math. 2014, 33, 299–306. [Google Scholar]
- Khan, M.B.; Zaini, H.G.; Santos-García, G. Riemann–Liouville Fractional Integral Inequalities for Generalized Harmonically Convex Fuzzy-Interval-Valued Functions. Int. J. Comput. Intell. Syst. 2022, 15, 28. [Google Scholar] [CrossRef]
- Shi, F.; Ye, G.; Zhao, D.; Liu, W. Some fractional Hermite–Hadamard type inequalities for interval-valued functions. Mathematics 2020, 8, 534. [Google Scholar] [CrossRef]
- Dragomir, S.S. Hermite–Hadamard type inequalities for generalized Riemann–Liouville fractional integrals of h-convex functions. Math. Methods Appl. Sci. 2021, 44, 2364–2380. [Google Scholar] [CrossRef]
- Khan, M.B.; Macías-Díaz, J.E.; Treanțǎ, S.; Soliman, M.S.; Zaini, H.G. Hermite–Hadamard Inequalities in Fractional Calculus for Left and Right Harmonically Convex Functions via Interval-Valued Settings. Fractal Fract. 2022, 6, 178. [Google Scholar] [CrossRef]
- Afzal, W.; Shabbir, K.; Arshad, M.; Asamoah, J.K.K.; Galal, A.M. Some Novel Estimates of Integral Inequalities for a Generalized Class of Harmonical Convex Mappings by Means of Center-Radius Order Relation. J. Math. 2023, 2023, 188–192. [Google Scholar] [CrossRef]
- Sharma, N.; Mishra, R.; Hamdi, A. Hermite–Hadamard Type Integral Inequalities for Multidimensional General h-Harmonic Preinvex Stochastic Processes. Commun.-Stat.-Theory Methods 2022, 51, 6719–6740. [Google Scholar] [CrossRef]
- Chen, J.L. Certain generalized Riemann–Liouville fractional integrals inequalities based on exponentially (h,m)-preinvexity. J. Math. Anal. Appl. 2023, 1, 127731. [Google Scholar] [CrossRef]
- Awan, M.U.; Akhtar, N.; Iftikhar, S.; Noor, M.A.; Chu, Y.-M. New Hermite–Hadamard Type Inequalities for n-Polynomial Harmonically Convex Functions. J. Inequal. Appl. 2020, 2020, 125. [Google Scholar] [CrossRef]
- Viloria, J.M.; Cortez, M.V. Hermite–Hadamard Type Inequalities for Harmonically Convex Functions on n-Coordinates. Appl. Math. Inf. Sci. Lett. 2018, 6, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Kunt, M.; İşcan, İ.; Yazıcı, N.; Gözütok, U. On New Inequalities of Hermite–Hadamard–Fejer Type for Harmonically Convex Functions via Fractional Integrals. arXiv 2016, arXiv:1409.5243. [Google Scholar] [CrossRef] [PubMed]
- Bin-Mohsin, B.; Awan, M.U.; Noor, M.A.; Riahi, L.; Noor, K.I.; Almutairi, B. New Quantum Hermite–Hadamard Inequalities Utilizing Harmonic Convexity of the Functions. IEEE Access 2019, 7, 20479–20483. [Google Scholar] [CrossRef]
- Afzal, W.; Abbas, M.; Hamali, W.; Mahnashi, A.M.; Sen, M.D.L. Hermite–Hadamard-Type Inequalities via Caputo–Fabrizio Fractional Integral for h-Godunova–Levin and (h1,h2)-Convex Functions. Fractal Fract. 2023, 7, 687. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, C.; Zhou, Y. New Generalized Hermite–Hadamard Type Inequalities and Applications to Special Means. J. Inequal. Appl. 2013, 2013, 325. [Google Scholar] [CrossRef]
- Abbas, M.; Afzal, W.; Botmart, T.; Galal, A.M. Jensen, Ostrowski and Hermite–Hadamard Type Inequalities for h-Convex Stochastic Processes by Means of Center-Radius Order Relation. AIMS Math. 2023, 8, 16013–16030. [Google Scholar] [CrossRef]
- Rostamian Delavar, M.; De La Sen, M. Some Generalizations of Hermite–Hadamard Type Inequalities. SpringerPlus 2016, 5, 1661. [Google Scholar] [CrossRef]
- Sharma, N.; Singh, S.K.; Mishra, S.K.; Hamdi, A. Hermite–Hadamard-Type Inequalities for Interval-Valued Preinvex Functions via Riemann–Liouville Fractional Integrals. J. Inequal. Appl. 2021, 2021, 98. [Google Scholar] [CrossRef]
- Lai, K.K.; Bisht, J.; Sharma, N.; Mishra, S.K. Hermite–Hadamard-Type Fractional Inclusions for Interval-Valued Preinvex Functions. Mathematics 2022, 10, 264. [Google Scholar] [CrossRef]
- Bhunia, A.K.; Samanta, S.S. A study of interval metric and its application in multi-objective optimization with interval objectives. Comput. Ind. Eng. 2014, 74, 169–178. [Google Scholar] [CrossRef]
- Liu, W.; Shi, F.; Ye, G.; Zhao, D. The Properties of Harmonically cr-h-Convex Function and Its Applications. Mathematics 2022, 10, 2089. [Google Scholar] [CrossRef]
- Saeed, T.; Afzal, W.; Abbas, M.; Treanţă, S.; De la Sen, M. Some New Generalizations of Integral Inequalities for Harmonical cr-(h1,h2)-Godunova-Levin Functions and Applications. Mathematics 2022, 10, 4540. [Google Scholar] [CrossRef]
- Afzal, W.; Abbas, M.; Macías-Díaz, J.E.; Treanta, S. Some H-Godunova–Levin Function Inequalities Using Center Radius (cr) Order Relation. Fractal Fract. 2022, 6, 518. [Google Scholar] [CrossRef]
- Vivas-Cortez, M.; Ramzan, S.; Awan, M.U.; Javed, M.Z.; Khan, A.G.; Noor, M.A. I.V-CR-γ-Convex Functions and Their Application in Fractional Hermite–Hadamard Inequalities. Symmetry 2023, 15, 1405. [Google Scholar] [CrossRef]
- Işcan, İ.; Wu, S. Hermite–Hadamard type inequalities for harmonically convex functions via fractional integrals. Appl. Math. Comput. 2014, 238, 237–244. [Google Scholar] [CrossRef]
- Chen, F. Extensions of the Hermite–Hadamard Inequality for Harmonically Convex Functions via Fractional Integrals. Appl. Math. Comput. 2015, 268, 121–128. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almalki, Y.; Afzal, W. Some New Estimates of Hermite–Hadamard Inequalities for Harmonical cr-h-Convex Functions via Generalized Fractional Integral Operator on Set-Valued Mappings. Mathematics 2023, 11, 4041. https://doi.org/10.3390/math11194041
Almalki Y, Afzal W. Some New Estimates of Hermite–Hadamard Inequalities for Harmonical cr-h-Convex Functions via Generalized Fractional Integral Operator on Set-Valued Mappings. Mathematics. 2023; 11(19):4041. https://doi.org/10.3390/math11194041
Chicago/Turabian StyleAlmalki, Yahya, and Waqar Afzal. 2023. "Some New Estimates of Hermite–Hadamard Inequalities for Harmonical cr-h-Convex Functions via Generalized Fractional Integral Operator on Set-Valued Mappings" Mathematics 11, no. 19: 4041. https://doi.org/10.3390/math11194041
APA StyleAlmalki, Y., & Afzal, W. (2023). Some New Estimates of Hermite–Hadamard Inequalities for Harmonical cr-h-Convex Functions via Generalized Fractional Integral Operator on Set-Valued Mappings. Mathematics, 11(19), 4041. https://doi.org/10.3390/math11194041