Similarity Transformations and Nonlocal Reduced Integrable Nonlinear Schrödinger Type Equations
Abstract
:1. Introduction
2. A Vector-Integrable Hamiltonian Hierarchy
3. Novel Nonlocal Integrable NLS-Type Equations
3.1. Similarity Transformation 1
3.2. Similarity Transformation 2
3.3. Similarity Transformation 3
4. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Novikov, S.P.; Manakov, S.V.; Pitaevskii, L.P.; Zakharov, V.E. Theory of Solitons: The Inverse Scattering Method; Consultants Bureau: New York, NY, USA, 1984. [Google Scholar]
- Ablowitz, M.J.; Kaup, D.J.; Newell, A.C.; Segur, H. The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math. 1974, 53, 249–315. [Google Scholar] [CrossRef]
- Antonowicz, M.; Fordy, A.P. Coupled KdV equations with multi-Hamiltonian structures. Physical D 1987, 28, 345–357. [Google Scholar] [CrossRef]
- Manukure, S. Finite-dimensional Liouville integrable Hamiltonian systems generated from Lax pairs of a bi-Hamiltonian soliton hierarchy by symmetry constraints. Commun. Nonlinear Sci. Numer. Simul. 2018, 57, 125–135. [Google Scholar] [CrossRef]
- Ma, W.X. A Hamiltonian structure associated with a matrix spectral problem of arbitrary-order. Phys. Lett. A 2007, 367, 473–477. [Google Scholar] [CrossRef]
- Ma, W.X. Nonlocal PT-symmetric integrable equations and related Riemann-Hilbert problems. Partial Differ. Equ. Appl. Math. 2021, 4, 100190. [Google Scholar] [CrossRef]
- Mikhailov, A.V. The reduction problem and the inverse scattering method. Physical D 1981, 3, 73–117. [Google Scholar] [CrossRef]
- Gerdjikov, V.S.; Grahovski, G.G.; Kostov, N.A. Reductions of N-wave interactions related to low-rank simple Lie algebras: I. Z2-reductions. J. Phys. A Math. Gen. 2001, 34, 9425–9461. [Google Scholar] [CrossRef]
- Ma, W.X. Application of the Riemann-Hilbert approach to the multicomponent AKNS integrable hierarchies. Nonlinear Anal. Real World Appl. 2019, 47, 1–17. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Musslimani, Z.H. Integrable nonlocal nonlinear equations. Stud. Appl. Math. 2017, 139, 7–59. [Google Scholar] [CrossRef]
- Song, C.Q.; Xiao, D.M.; Zhu, Z.N. Solitons and dynamics for a general integrable nonlocal coupled nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 2017, 45, 13–28. [Google Scholar] [CrossRef]
- Gürses, M.; Pekcan, A. Nonlocal nonlinear Schrödinger equations and their soliton solutions. J. Math. Phys. 2018, 59, 051501. [Google Scholar] [CrossRef]
- Yang, J. General N-solitons and their dynamics in several nonlocal nonlinear Schrödinger equations. Phys. Lett. A 2019, 383, 328–337. [Google Scholar] [CrossRef]
- Ma, W.X. Soliton solutions to constrained nonlocal integrable nonlinear Schrödinger hierarchies of type (-λ, λ). Int. J. Geom. Methods Mod. Phys. 2023, 20, 2350098. [Google Scholar] [CrossRef]
- Ma, W.X. Integrable non-local nonlinear Schrödinger hierarchies of type (-λ*,λ) and soliton solutions. Rep. Math. Phys. 2023, 92, 19–36. [Google Scholar] [CrossRef]
- Ma, W.X. A multi-component integrable hierarchy and its integrable reductions. Phys. Lett. A 2023, 457, 128575. [Google Scholar] [CrossRef]
- Magri, F. A simple model of the integrable Hamiltonian equation. J. Math. Phys. 1978, 19, 1156–1162. [Google Scholar] [CrossRef]
- Fuchssteiner, B.; Fokas, A.S. Symplectic structures, their Bäcklund transformations and hereditary symmetries. Phys. D 1981, 4, 47–66. [Google Scholar] [CrossRef]
- Ma, W.X. A Liouville integrable hierarchy with four potentials and its bi-Hamiltonian structure. Rom. Rep. Phys. 2023, 75, 115. [Google Scholar]
- Ma, W.X. A six-component integrable hierarchy and its Hamiltonian formulation. Mod. Phys. Lett. B 2023, 37, 2350143. [Google Scholar] [CrossRef]
- Yang, X.H.; Wu, L.J.; Zhang, H.X. A space-time spectral order sinc-collocation method for the fourth-order nonlocal heat model arising in viscoelasticity. Appl. Math. Comput. 2023, 457, 128192. [Google Scholar]
- Wang, S.; Liu, J.; Zhang, X.D. Properties of solutions for fractional-order linear system with differential equations. AIMS Math. 2022, 7, 15704–15713. [Google Scholar] [CrossRef]
- Ma, W.X. AKNS type reduced integrable bi-Hamiltonian hierarchies with four potentials. Appl. Math. Lett. 2023, 145, 108775. [Google Scholar] [CrossRef]
- Ma, W.X. Four-component integrable hierarchies of Hamiltonian equations with (m+n+2)th-order Lax pairs. Theor. Math. Phys. 2023, 216, 1180–1188. [Google Scholar] [CrossRef]
- Geng, X.G.; Li, R.M.; Xue, B. A vector general nonlinear Schrödinger equation with (m+n) components. J. Nonlinear Sci. 2020, 30, 991–1013. [Google Scholar] [CrossRef]
- Cheng, L.; Zhang, Y.; Lin, M.J. Lax pair and lump solutions for the (2 + 1)-dimensional DJKM equation associated with bilinear Bäcklund transformations. Anal. Math. Phys. 2019, 9, 1741–1752. [Google Scholar] [CrossRef]
- Sulaiman, T.A.; Yusuf, A.; Abdeljabbar, A.; Alquran, M. Dynamics of lump collision phenomena to the (3 + 1)-dimensional nonlinear evolution equation. J. Geom. Phys. 2021, 169, 104347. [Google Scholar] [CrossRef]
- Manukure, S.; Chowdhury, A.; Zhou, Y. Complexiton solutions to the asymmetric Nizhnik-Novikov-Veselov equation. Int. J. Mod. Phys. B 2019, 33, 1950098. [Google Scholar] [CrossRef]
- Zhou, Y.; Manukure, S.; McAnally, M. Lump and rogue wave solutions to a (2+1)-dimensional Boussinesq type equation. J. Geom. Phys. 2021, 167, 104275. [Google Scholar] [CrossRef]
- Cheng, L.; Zhang, Y. Grammian-type determinant solutions to generalized KP and BKP equations. Comput. Math. Appl. 2017, 74, 727–735. [Google Scholar] [CrossRef]
- Gesztesy, F.; Holden, H. Soliton Equations and Their Algebro-Geometric Solutions: (1+1)-Dimensional Continuous Models; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Geng, X.G.; Liu, W.; Xue, B. Finite genus solutions to the coupled Burgers hierarchy. Results Math. 2019, 74, 11. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, L.; Ma, W.-X. Similarity Transformations and Nonlocal Reduced Integrable Nonlinear Schrödinger Type Equations. Mathematics 2023, 11, 4110. https://doi.org/10.3390/math11194110
Cheng L, Ma W-X. Similarity Transformations and Nonlocal Reduced Integrable Nonlinear Schrödinger Type Equations. Mathematics. 2023; 11(19):4110. https://doi.org/10.3390/math11194110
Chicago/Turabian StyleCheng, Li, and Wen-Xiu Ma. 2023. "Similarity Transformations and Nonlocal Reduced Integrable Nonlinear Schrödinger Type Equations" Mathematics 11, no. 19: 4110. https://doi.org/10.3390/math11194110
APA StyleCheng, L., & Ma, W. -X. (2023). Similarity Transformations and Nonlocal Reduced Integrable Nonlinear Schrödinger Type Equations. Mathematics, 11(19), 4110. https://doi.org/10.3390/math11194110