On Λ-Fractional Wave Propagation in Solids
Abstract
:1. Introduction
- Linearity .
- Leibniz rule
- Chain rule .
2. The Λ-Fractional Analysis
3. Waves with Shocks in Λ-Fractional Non-Linear Elasticity
4. The Fractional Impact Problem for Two-Phase Materials
- i.
- The low-pressure phase shock wave case.
- ii.
- The low-pressure phase shock wave followed by a low-pressure phase followed by a high-pressure phase boundary.
- iii.
- A phase boundary from the low-pressure phase to the high-pressure phase. No shock wave is involved.
5. Waves with Shocks in Λ-Fractional Viscoelasticity
- a.
- Substitution of the T variable by the equivalent of T in Equation (36). Hence,
- b.
- Transferring the jumping function of the stress into the initial space just to yield the function
6. Conclusions—Further Results
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bagley, R.L.; Torvik, P.J. On the fractional calculus model of viscoelastic behavior. J. Rheol. 1986, 30, 133–155. [Google Scholar] [CrossRef]
- Bagley, R.L.; Torvik, P.J. A Theoretical for the application of fractional calculus to viscoelasticity. J. Rheol. 1983, 27, 201–210. [Google Scholar] [CrossRef]
- Atanackovic, T.M.; Stankovic, B. Dynamics of a viscoelastic rod of fractional derivative type. ZAMM 2002, 82, 377–386. [Google Scholar] [CrossRef]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity; Imperial College Press: London, UK, 2010. [Google Scholar]
- Lazopoulos, K.A. Non-local continuum mechanics and fractional calculus. Mech. Res. Commun. 2006, 33, 753–757. [Google Scholar] [CrossRef]
- Truesdell, C.; Noll, W. The non-linear field theories of mechanics. In Handbuch der Physik; Fluegge, S., Ed.; Springer: Berlin/Heidelberg, Germany, 1965; Volume III/3. [Google Scholar]
- Eringen, A.C. Non-Local Continuum Field Theories; Springer: New York, NY, USA, 2002. [Google Scholar]
- Leibniz, G.W. Letter to G.A. L’Hospital, Leibnitzen Mathematishe Schriften; A. Asher: Berlin, Germany, 1849; Volume 2, pp. 301–302. [Google Scholar]
- Liouville, J. Sur le calcul des differentielles a indices quelconques. Ec. Polytech. 1832, 13, 71–162. [Google Scholar]
- Riemann, B. Versuch einer allgemeinen Auffassung der Integration and Differentiation. In Gesammelte Werke; Cambridge University Press: Cambridge, UK, 1876; p. 62. [Google Scholar]
- Miller, K.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; John Wiley & Sons: New York, NY, USA, 1993. [Google Scholar]
- Podlubny, I. Fractional Differential Equations An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications; Academic Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Oldham, K.B.; Spanier, J. The Fractional Calculus; Academic Press: New York, NY, USA; London, UK, 1974. [Google Scholar]
- Chillingworth, D.R.J. Differential Topology with a View to Applications; Pitman: London, UK; San Francisco, CA, USA, 1976. [Google Scholar]
- Lazopoulos, K.A.; Lazopoulos, A.K. On the Mathematical Formulation of Fractional Derivatives. Prog. Fract. Diff. Appl. 2019, 5, 261–267. [Google Scholar]
- Lazopoulos, K.A.; Lazopoulos, A.K. On fractional bending of beams with Λ-fractional derivative. Arch. Appl. Mech. 2020, 90, 573–584. [Google Scholar] [CrossRef]
- Lazopoulos, K.A.; Lazopoulos, A.K. On plane Λ-fractional linear elasticity theory. Theor. Appl. Mech. Lett. 2020, 10, 270–275. [Google Scholar] [CrossRef]
- Lazopoulos, K.A.; Lazopoulos, A.K. On the fractional deformation of a linearly elastic bar. J. Mech. Behav. Mater. 2019, 28, 9–18. [Google Scholar] [CrossRef]
- Lazopoulos, K.A.; Lazopoulos, A.K. On Λ-fractional Elastic Solid Mechanics. Meccanica 2022, 57, 775–791. [Google Scholar] [CrossRef]
- Lazopoulos, K.A. Stability criteria and Λ-fractional mechanics. Fractal Fract. 2023, 7, 248. [Google Scholar] [CrossRef]
- Ericksen, J.L. Equilibrium of bars. J. Elast. 1975, 5, 191–201. [Google Scholar] [CrossRef]
- Abeyaratne, R.; Knowles, J.K. Evolution of Phase Transitions, a Continuum Theory; Cambridge University Press: Camgridge, UK, 2006. [Google Scholar]
- Lazopoulos, K.A.; Lazopoulos, A.K. On Λ-fractional continuum mechanics fields. Fractal Fract. 2020; submitted. [Google Scholar]
- Gelfand, I.H.; Fomin, S.V. Calculus of Variations; Prentice Hall: Englewood Cliffs, NJ, USA, 1963. [Google Scholar]
- Demmie, P.N.; Ostoya-Starzewski, M. Waves in fractal media. J. Elast. 2011, 104, 187–2011. [Google Scholar] [CrossRef]
- Nadeem, M.; He, J.-H. The homotopy perturbation method for fractional differential equations: Part 2, two-scale transform. Int. J. Numer. Methods Heat Fluid Flow 2022, 32, 559–567. [Google Scholar] [CrossRef]
- Nadeem, M.; He, J.-H.; Sedighi, H.M. Numerical analysis of multi-dimensional time-fractional diffusion problems under the Atangana-Baleanu Caputo derivative. Math. Biosci. Eng. 2023, 20, 8190–8207. [Google Scholar] [CrossRef] [PubMed]
- Carpinteri, A.; Chiaia, B.; Cornetti, P. Static-kinematic duality and the principle of virtual work in the mechanics of fractal media. Comp. Math. Appl. Mech. Eng. 2001, 191, 3–19. [Google Scholar] [CrossRef]
- Luchko, Y. Fractional wave equation and damped waves. J. Math. Phys. 2013, 54, 031505. [Google Scholar]
- Sander, T.; Tomovski, Z. Fractional Wave Equations, Development in Mathematics; DEVM Volume 61 ; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Liang, Y.; Su, W. Connection between the order of fractional calculus and the fractional dimension of a type of fractal functions. Anal. Theory Appl. 2007, 23, 354–362. [Google Scholar] [CrossRef]
- He, J.-H. Fractal calculus and its geometrical explanation. Results Phys. 2018, 10, 272–276. [Google Scholar] [CrossRef]
- Liang, Y.S.; Su, W.Y. The relationship between the fractal dimension of a type of fractal functions and the order of their fractional calculus. Chaos Solitons Fractals 2007, 34, 682–692. [Google Scholar] [CrossRef]
- Liang, Y. On the fractional Calculus of Besicovitch function. Chaos Solitons Fractals 2009, 42, 2741–2747. [Google Scholar] [CrossRef]
- Yao, K.; Su, W.Y.; Zhou, S.P. On the connection between the order of fractional calculus and the dimensions of a fractal function. Chaos Solitons Fractals 2005, 23, 621–629. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazopoulos, K.A.; Lazopoulos, A.K. On Λ-Fractional Wave Propagation in Solids. Mathematics 2023, 11, 4183. https://doi.org/10.3390/math11194183
Lazopoulos KA, Lazopoulos AK. On Λ-Fractional Wave Propagation in Solids. Mathematics. 2023; 11(19):4183. https://doi.org/10.3390/math11194183
Chicago/Turabian StyleLazopoulos, Kostantinos A., and Anastasios K. Lazopoulos. 2023. "On Λ-Fractional Wave Propagation in Solids" Mathematics 11, no. 19: 4183. https://doi.org/10.3390/math11194183
APA StyleLazopoulos, K. A., & Lazopoulos, A. K. (2023). On Λ-Fractional Wave Propagation in Solids. Mathematics, 11(19), 4183. https://doi.org/10.3390/math11194183