A Review of Combinatorial Optimization Problems in Reverse Logistics and Remanufacturing for End-of-Life Products
Abstract
:1. Introduction
2. Facility Location and VRP in RL
2.1. Facility Location in RL
2.1.1. General Network Structure
2.1.2. Closed-Loop Network Structure
2.1.3. Hybrid Network Structure
2.2. VRP in RL
3. Scheduling in Remanufacturing
3.1. Disassembly Scheduling in Remanufacturing
3.2. Production Scheduling in Remanufacturing
3.3. Integrated Scheduling in Remanufacturing
4. Disassembly in Remanufacturing
4.1. Disassembly Sequence Planning
4.2. Disassembly-Line-Balancing Problem
4.3. Integrated Disassembly and Reassembly
5. Analysis and Discussion
5.1. Optimization Methodology
5.2. Problem Uncertainty
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stock, J.R. Reverse Logistics: White Paper; Council of Logistics Management: Lombard, IL, USA, 1992. [Google Scholar]
- Zhang, X.; Zou, B.; Feng, Z.; Wang, Y.; Yan, W. A Review on Remanufacturing Reverse Logistics Network Design and Model Optimization. Processes 2021, 10, 84. [Google Scholar] [CrossRef]
- Chanintrakul, P.; Coronado Mondragon, A.E.; Lalwani, C.; Wong, C.Y. Reverse logistics network design: A state-of-the-art literature review. Int. J. Bus. Perform. Supply Chain Model. 2009, 1, 61–81. [Google Scholar] [CrossRef]
- Waidyathilaka, E.; Tharaka, V.K.; Wickramarachchi, A.P.R. Trends in Green Vehicle Routing in Reverse Logistics. In Proceedings of the International Conference on Industrial Engineering and Operations Management (IEOM), Bangkok, Thailand, 5–7 March 2019. [Google Scholar]
- Han, H.; Ponce Cueto, E. Waste collection vehicle routing problem: Literature review. PROMET Traffic Transp. 2015, 27, 345–358. [Google Scholar] [CrossRef] [Green Version]
- Majumder, P.; Groenevelt, H. Competition in remanufacturing. Prod. Oper. Manag. 2001, 10, 125–141. [Google Scholar] [CrossRef]
- Nasr, N.; Thurston, M. Remanufacturing: A key enabler to sustainable product systems. Rochester Instit. Technol. 2006, 23, 14–17. [Google Scholar]
- Laili, Y.; Li, Y.; Fang, Y.; Pham, D.T.; Zhang, L. Model review and algorithm comparison on multi-objective disassembly line balancing. J. Manuf. Syst. 2020, 56, 484–500. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, J.; Pham, D.T.; Xu, W.; Ramirez, F.J.; Ji, C.; Liu, Q. Disassembly sequence planning: Recent developments and future trends. Proc. Instit. Mech. Eng. Part B J. Eng. Manuf. 2019, 233, 1450–1471. [Google Scholar] [CrossRef]
- Morgan, S.D.; Gagnon, R.J. A systematic literature review of remanufacturing scheduling. Int. J. Prod. Res. 2013, 51, 4853–4879. [Google Scholar] [CrossRef]
- Wang, Y.; Mendis, G.P.; Peng, S.; Sutherland, J.W. Component-oriented reassembly in remanufacturing systems: Managing uncertainty and satisfying customer needs. J. Manuf. Sci. Eng. 2019, 141, 021005. [Google Scholar] [CrossRef]
- Fleischmann, M.; Bloemhof-Ruwaard, J.M.; Beullens, P.; Dekker, R. Reverse logistics network design. In Reverse Logistics; Springer: Berlin/Heidelberg, Germany, 2004; pp. 65–94. [Google Scholar]
- Sasikumar, P.; Kannan, G.; Haq, A.N. A multi-echelon reverse logistics network design for product recovery—A case of truck tire remanufacturing. Int. J. Adv. Manuf. Technol. 2010, 49, 1223–1234. [Google Scholar] [CrossRef]
- Liao, T.Y. Reverse logistics network design for product recovery and remanufacturing. Appl. Math. Model. 2018, 60, 145–163. [Google Scholar] [CrossRef]
- Alumur, S.A.; Nickel, S.; Saldanha-da-Gama, F.; Verter, V. Multi-period reverse logistics network design. Eur. J. Oper. Res. 2012, 220, 67–78. [Google Scholar] [CrossRef]
- Alshamsi, A.; Diabat, A. A reverse logistics network design. J. Manuf. Syst. 2015, 37, 589–598. [Google Scholar] [CrossRef]
- Demirel, E.; Demirel, N.; Gökçen, H. A mixed integer linear programming model to optimize reverse logistics activities of end-of-life vehicles in Turkey. J. Clean. Prod. 2016, 112, 2101–2113. [Google Scholar] [CrossRef]
- Alshamsi, A.; Diabat, A. A Genetic Algorithm for Reverse Logistics network design: A case study from the GCC. J. Clean. Prod. 2017, 151, 652–669. [Google Scholar] [CrossRef]
- Reddy, K.N.; Kumar, A.; Ballantyne, E.E.F. A three-phase heuristic approach for reverse logistics network design incorporating carbon footprint. Int. J. Prod. Res. 2019, 57, 6090–6114. [Google Scholar] [CrossRef]
- Reddy, K.N.; Kumar, A.; Sarkis, J.; Tiwari, M.K. Effect of carbon tax on reverse logistics network design. Comput. Ind. Eng. 2020, 139, 106184. [Google Scholar] [CrossRef]
- Roghanian, E.; Pazhoheshfar, P. An optimization model for reverse logistics network under stochastic environment by using genetic algorithm. J. Manuf. Syst. 2014, 33, 348–356. [Google Scholar] [CrossRef]
- Tari, I.; Alumur, S.A. Collection center location with equity considerations in reverse logistics networks. INFOR Inf. Syst. Oper. Res. 2014, 52, 157–173. [Google Scholar] [CrossRef] [Green Version]
- Zarei, M.; Mansour, S.; Husseinzadeh Kashan, A.; Karimi, B. Designing a reverse logistics network for end-of-life vehicles recovery. Math. Probl. Eng. 2010, 2010, 649028. [Google Scholar] [CrossRef]
- Wang, H.F.; Hsu, H.W. A closed-loop logistic model with a spanning-tree based genetic algorithm. Comput. Oper. Res. 2010, 37, 376–389. [Google Scholar] [CrossRef]
- Pishvaee, M.S.; Torabi, S.A.; Razmi, J. Credibility-based fuzzy mathematical programming model for green logistics design under uncertainty. Comput. Ind. Eng. 2012, 62, 624–632. [Google Scholar] [CrossRef]
- Zohal, M.; Soleimani, H. Developing an ant colony approach for green closed-loop supply chain network design: A case study in gold industry. J. Clean. Prod. 2016, 133, 314–337. [Google Scholar] [CrossRef]
- Devika, K.; Jafarian, A.; Nourbakhsh, V. Designing a sustainable closed-loop supply chain network based on triple bottom line approach: A comparison of metaheuristics hybridization techniques. Eur. J. Oper. Res. 2014, 235, 594–615. [Google Scholar] [CrossRef]
- Fard, A.M.F.; Gholian-Jouybari, F.; Paydar, M.M.; Hajiaghaei-Keshteli, M. A bi-objective stochastic closed-loop supply chain network design problem considering downside risk. Ind. Eng. Manag. Syst. 2017, 16, 342–362. [Google Scholar]
- Fard, A.M.F.; Hajaghaei-Keshteli, M. A tri-level location-allocation model for forward/reverse supply chain. Appl. Soft Comput. 2018, 62, 328–346. [Google Scholar] [CrossRef]
- Pishvaee, M.S.; Rabbani, M.; Torabi, S.A. A robust optimization approach to closed-loop supply chain network design under uncertainty. Appl. Math. Model. 2011, 35, 637–649. [Google Scholar] [CrossRef]
- Chaabane, A.; Ramudhin, A.; Paquet, M. Design of sustainable supply chains under the emission trading scheme. Int. J. Prod. Econ. 2012, 135, 37–49. [Google Scholar] [CrossRef]
- Soleimani, H.; Kannan, G. A hybrid particle swarm optimization and genetic algorithm for closed-loop supply chain network design in large-scale networks. Appl. Math. Model. 2015, 39, 3990–4012. [Google Scholar] [CrossRef]
- Hajiaghaei-Keshteli, M.; Fathollahi Fard, A.M. Sustainable closed-loop supply chain network design with discount supposition. Neural Comput. Appl. 2019, 31, 5343–5377. [Google Scholar] [CrossRef]
- Lee, D.H.; Dong, M.; Bian, W. The design of sustainable logistics network under uncertainty. Int. J. Prod. Econ. 2010, 128, 159–166. [Google Scholar] [CrossRef]
- Fleischmann, M.; Beullens, P.; Bloemhof-Ruwaard, J.M.; Van Wassenhove, L.N. The impact of product recovery on logistics network design. Prod. Oper. Manag. 2001, 10, 156–173. [Google Scholar] [CrossRef]
- Salema, M.I.G.; Barbosa-Povoa, A.P.; Novais, A.Q. An optimization model for the design of a capacitated multi-product reverse logistics network with uncertainty. Eur. J. Oper. Res. 2007, 179, 1063–1077. [Google Scholar] [CrossRef]
- Salema, M.I.G.; Barbosa-Povoa, A.P.; Novais, A.Q. Simultaneous design and planning of supply chains with reverse flows: A generic modelling framework. Eur. J. Oper. Res. 2010, 203, 336–349. [Google Scholar] [CrossRef]
- Cardoso, S.R.; Barbosa-Póvoa, A.P.F.D.; Relvas, S. Design and planning of supply chains with integration of reverse logistics activities under demand uncertainty. Eur. J. Oper. Res. 2013, 226, 436–451. [Google Scholar] [CrossRef]
- Cardoso, S.R.; Barbosa-Póvoa, A.P.; Relvas, S.; Novais, A.Q. Resilience metrics in the assessment of complex supply-chains performance operating under demand uncertainty. Omega 2015, 56, 53–73. [Google Scholar] [CrossRef]
- Paksoy, T.; Bektaş, T.; Özceylan, E. Operational and environmental performance measures in a multi-product closed-loop supply chain. Transp. Res. Part E Logist. Transp. Rev. 2011, 47, 532–546. [Google Scholar] [CrossRef]
- Mota, B.; Gomes, M.I.; Carvalho, A.; Barbosa-Povoa, A.P. Towards supply chain sustainability: Economic, environmental and social design and planning. J. Clean. Prod. 2015, 105, 14–27. [Google Scholar] [CrossRef]
- Gao, X. A novel reverse logistics network design considering multi-level investments for facility reconstruction with environmental considerations. Sustainability 2019, 11, 2710. [Google Scholar] [CrossRef] [Green Version]
- Cao, S.; Liao, W.; Huang, Y. Heterogeneous fleet recyclables collection routing optimization in a two-echelon collaborative reverse logistics network from circular economic and environmental perspective. Sci. Total Environ. 2021, 758, 144062. [Google Scholar] [CrossRef]
- Richnák, P.; Gubová, K. Green and reverse logistics in conditions of sustainable development in enterprises in Slovakia. Sustainability 2021, 13, 581. [Google Scholar] [CrossRef]
- Chen, Z.-S.; Zhang, X.; Govindan, K.; Wang, X.-J.; Chim, K.-S. Third-party reverse logistics provider selection: A computational semantic analysis-based multi-perspective multi-attribute decision-making approach. Expert Syst. Appl. 2021, 166, 114051. [Google Scholar] [CrossRef]
- Santana, J.C.C.; Guerhardt, F.; Franzini, C.E.; Ho, L.L.; Ribeiro, S.E.R., Jr.; Cânovas, G.; Yamamura, C.L.K.; Vanalle, R.M.; Berssaneti, F.T. Refurbishing and recycling of cell phones as a sustainable process of reverse logistics: A case study in Brazil. J. Clean. Prod. 2021, 283, 124585. [Google Scholar] [CrossRef]
- Mishra, A.R.; Rani, P.; Pandey, K. Fermatean fuzzy CRITIC-EDAS approach for the selection of sustainable third-party reverse logistics providers using improved generalized score function. J. Ambient Intell. Hum. Comput. 2022, 13, 295–311. [Google Scholar] [CrossRef]
- Chen, C.-M.; Xie, W.-C.; Li, L.-L.; Fan, S.-S.; Jiang, W.-B. The Research on Logistics Vehicle Path Optimization of Improved Ant Colony Algorithm. Adv. Sci. Lett. 2012, 11, 493–497. [Google Scholar] [CrossRef]
- Foroutan, R.A.; Rezaeian, J.; Mahdavi, I. Green vehicle routing and scheduling problem with heterogeneous fleet including reverse logistics in the form of collecting returned goods. Appl. Soft Comput. 2020, 94, 106462. [Google Scholar] [CrossRef]
- Chaabane, A.; Montecinos, J.; Ouhimmou, M.; Khabou, A. Vehicle routing problem for reverse logistics of End-of-Life Vehicles (ELVs). Waste Manag. 2021, 120, 209–220. [Google Scholar] [CrossRef]
- Desrosiers, J.; Lübbecke, M.E. Branch-price-and-cut algorithms. In Encyclopedia of Operations Research and Management Science; John Wiley & Sons: Chichester, UK, 2011; pp. 109–131. [Google Scholar]
- Xu, D.; Li, K.; Zheng, P.; Tian, Q. Multi-parking, multi-vehicle, multi-category supply and demand unmatched and arbitrarily splittable delivery vehicle routing problem optimization. J. Manag. 2020, 17, 1086–1095. [Google Scholar]
- Fan, H.; Liu, H.; Liu, P.; Ren, X. Optimization of the simultaneous distribution and collection path of irregular vehicles with fuzzy collection demand. Control Theory Appl. 2020, 1, 14. [Google Scholar]
- Guo, F.; Yang, J.; Yang, C. Research on path optimization and charging strategy of multi-model electric vehicles considering differentiated service time. Chin. Manag. Sci. 2019, 27, 118–128. [Google Scholar]
- Zhang, M.; Pratap, S.; Zhao, Z.; Prajapati, D.; Huang, G.Q. Forward and reverse logistics vehicle routing problems with time horizons in B2C e-commerce logistics. Int. J. Prod. Res. 2021, 59, 6291–6310. [Google Scholar] [CrossRef]
- Dethloff, J. Vehicle routing and reverse logistics: The vehicle routing problem with simultaneous delivery and pick-up. OR-Spektrum 2001, 23, 79–96. [Google Scholar] [CrossRef]
- Masson, R.; Ropke, S.; Lehuédé, F.; Péton, O. A branch-and-cut-and-price approach for the pickup and delivery problem with shuttle routes. Eur. J. Oper. Res. 2014, 236, 849–862. [Google Scholar] [CrossRef]
- Nagy, G.; Wassan, N.A.; Speranza, M.G.; Archetti, C. The vehicle routing problem with divisible deliveries and pickups. Transp. Sci. 2015, 49, 271–294. [Google Scholar] [CrossRef] [Green Version]
- Ghilas, V.; Demir, E.; Van Woensel, T. An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows and scheduled lines. Comput. Oper. Res. 2016, 72, 12–30. [Google Scholar] [CrossRef]
- Gschwind, T.; Irnich, S.; Rothenbächer, A.K.; Tilk, C. Bidirectional labeling in column-generation algorithms for pickup-and-delivery problems. Eur. J. Oper. Res. 2018, 266, 521–530. [Google Scholar] [CrossRef] [Green Version]
- Goeke, D. Granular tabu search for the pickup and delivery problem with time windows and electric vehicles. Eur. J. Oper. Res. 2019, 278, 821–836. [Google Scholar] [CrossRef]
- Wolfinger, D. A large neighborhood search for the pickup and delivery problem with time windows, split loads and transshipments. Comput. Oper. Res. 2021, 126, 105110. [Google Scholar] [CrossRef]
- Haddad, M.N.; Martinelli, R.; Vidal, T.; Ochi, L.S.; Martins, S.; Jamilson, M.; Souza, J.F.M.; Hartl, R. Large neighborhood-based metaheuristic and branch-and-price for the pickup and delivery problem with split loads. Eur. J. Oper. Res. 2018, 270, 1014–1027. [Google Scholar] [CrossRef]
- Gupta, S.M.; Taleb, K.N. Scheduling disassembly. Int. J. Prod. Res. 1994, 32, 1857–1866. [Google Scholar] [CrossRef]
- Taleb, K.N.; Gupta, S.M.; Brennan, L. Disassembly of complex product structures with parts and materials commonality. Prod. Plan. Control 1997, 8, 255–269. [Google Scholar] [CrossRef]
- Kim, H.J.; Lee, D.H.; Xirouchakis, P.; Züst, R. Disassembly scheduling with multiple product types. CIRP Ann. 2003, 52, 403–406. [Google Scholar] [CrossRef]
- Lee, D.H.; Kim, H.J.; Choi, G.; Xirouchakis, P. Disassembly scheduling: Integer programming models. Proc. Instit. Mech. Eng. Part B J. Eng. Manuf. 2004, 218, 1357–1372. [Google Scholar] [CrossRef]
- Lee, D.H.; Xirouchakis, P. A two-stage heuristic for disassembly scheduling with assembly product structure. J. Oper. Res. Soc. 2004, 55, 287–297. [Google Scholar] [CrossRef]
- Inderfurth, K.; Langella, I.M. Heuristics for solving disassemble-to-order problems with stochastic yields. Or Spectr. 2006, 28, 73–99. [Google Scholar] [CrossRef]
- Kongar, E.; Gupta, S.M. Disassembly to order system under uncertainty. Omega 2006, 34, 550–561. [Google Scholar] [CrossRef]
- Kongar, E.; Gupta, S.M. A multi-criteria decision making approach for disassembly-to-order systems. J. Electron. Manuf. 2002, 11, 171–183. [Google Scholar] [CrossRef]
- Barba-Gutiérrez, Y.; Adenso-Díaz, B. Reverse MRP under uncertain and imprecise demand. Int. J. Adv. Manuf. Technol. 2009, 40, 413–424. [Google Scholar] [CrossRef]
- Barba-Gutiérrez, Y.; Adenso-Diaz, B.; Gupta, S.M. Lot sizing in reverse MRP for scheduling disassembly. Int. J. Prod. Econ. 2008, 111, 741–751. [Google Scholar] [CrossRef]
- Kim, D.H.; Lee, D.H. A heuristic for multi-period disassembly leveling and scheduling. In Proceedings of the 2011 IEEE/SICE International Symposium on System Integration (SII), Kyoto, Japan, 20–22 December 2011; pp. 762–767. [Google Scholar]
- Kim, D.H.; Doh, H.H.; Lee, D.H. Multi-period disassembly levelling and lot-sizing for multiple product types with parts commonality. Proc. Instit. Mech. Eng. Part B J. Eng. Manuf. 2018, 232, 867–878. [Google Scholar] [CrossRef]
- Lee, D.H.; Xirouchakis, P.; Zust, R. Disassembly scheduling with capacity constraints. CIRP Ann. 2002, 51, 387–390. [Google Scholar] [CrossRef]
- Kim, J.-G.; Jeon, H.-B.; Kim, H.-J.; Lee, D.-H.; Xirouchakis, P. Capacitated disassembly scheduling: Minimizing the number of products disassembled. In Proceedings of the International Conference on Computational Science and Its Applications, Singapore, 9–12 May 2005; pp. 538–547. [Google Scholar]
- Kim, H.J.; Lee, D.H.; Xirouchakis, P. A Lagrangean heuristic algorithm for disassembly scheduling with capacity constraints. J. Oper. Res. Soc. 2006, 57, 1231–1240. [Google Scholar] [CrossRef]
- Prakash, P.K.S.; Ceglarek, D.; Tiwari, M.K. Constraint-based simulated annealing (CBSA) approach to solve the disassembly scheduling problem. Int. J. Adv. Manuf. Technol. 2012, 60, 1125–1137. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, Z.H. Capacitated disassembly scheduling under stochastic yield and demand. Eur. J. Oper. Res. 2018, 269, 244–257. [Google Scholar] [CrossRef]
- Ullerich, C.; Buscher, U. Flexible disassembly planning considering product conditions. Int. J. Prod. Res. 2013, 51, 6209–6228. [Google Scholar] [CrossRef]
- Ji, X.; Zhang, Z.; Huang, S.; Li, L. Capacitated disassembly scheduling with parts commonality and start-up cost and its industrial application. Int. J. Prod. Res. 2016, 54, 1225–1243. [Google Scholar] [CrossRef]
- Godichaud, M.; Amodeo, L.; Hrouga, M. Metaheuristic based optimization for capacitated disassembly lot sizing problem with lost sales. In Proceedings of the 2015 international conference on industrial engineering and systems management (IESM), Seville, Spain, 21–23 October 2015; pp. 1329–1335. [Google Scholar]
- Hrouga, M.; Godichaud, M.; Amodeo, L. Efficient metaheuristic for multi-product disassembly lot sizing problem with lost sales. In Proceedings of the 2016 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Bali, Indonesia, 4–7 December 2016; pp. 740–744. [Google Scholar]
- Hrouga, M.; Godichaud, M.; Amodeo, L. Heuristics for multi-product capacitated disassembly lot sizing with lost sales. IFAC-PapersOnLine 2016, 49, 628–633. [Google Scholar] [CrossRef]
- Kim, H.J.; Xirouchakis, P. Capacitated disassembly scheduling with random demand. Int. J. Prod. Res. 2010, 48, 7177–7194. [Google Scholar] [CrossRef]
- Tian, X.; Zhang, Z.H. Capacitated disassembly scheduling and pricing of returned products with price-dependent yield. Omega 2019, 84, 160–174. [Google Scholar] [CrossRef]
- Zhou, F.; He, Y.; Ma, P.; Lim, M.K.; Pratap, S. Capacitated disassembly scheduling with random demand and operation time. J. Oper. Res. Soc. 2022, 73, 1362–1378. [Google Scholar] [CrossRef]
- Yuan, G.; Yang, Y.; Tian, G.; Fathollahi-Fard, A.M. Capacitated multi-objective disassembly scheduling with fuzzy processing time via a fruit fly optimization algorithm. Environ. Sci. Pollut. Res. 2022; ahead-of-print. [Google Scholar]
- Slama, I.; Ben-Ammar, O.; Dolgui, A.; Masmoudi, F. New mixed integer approach to solve a multi-level capacitated disassembly lot-sizing problem with defective items and backlogging. J. Manuf. Syst. 2020, 56, 50–57. [Google Scholar] [CrossRef]
- Slama, I.; Ben-Ammar, O.; Dolgui, A.; Masmoudi, F. Genetic algorithm and Monte Carlo simulation for a stochastic capacitated disassembly lot-sizing problem under random lead times. Comput. Ind. Eng. 2021, 159, 107468. [Google Scholar] [CrossRef]
- Wen, H.; Hou, S.; Liu, Z.; Yongjiang, L. An optimization algorithm for integrated remanufacturing production planning and scheduling system. Chaos Solitons Fractals 2017, 105, 69–76. [Google Scholar] [CrossRef]
- He, P. Optimization and simulation of remanufacturing production scheduling under uncertainties. Int. J. Simul. Model. 2018, 17, 734–743. [Google Scholar] [CrossRef]
- Peng, S.; Li, T.; Zhao, J.; Guo, Y.; Lv, S.; Tan, G.Z.; Zhang, H. Petri net-based scheduling strategy and energy modeling for the cylinder block remanufacturing under uncertainty. Robot. Comput. Int. Manuf. 2019, 58, 208–219. [Google Scholar] [CrossRef]
- Zhang, H.P. Optimization of remanufacturing production scheduling considering uncertain factors. Int. J. Simul. Model. 2019, 18, 344–354. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, W.; Zhang, S.; Chen, J. A new bifuzzy optimization method for remanufacturing scheduling using extended discrete particle swarm optimization algorithm. Comput. Ind. Eng. 2021, 156, 107219. [Google Scholar] [CrossRef]
- Kim, H.J.; Lee, D.H.; Xirouchakis, P. Disassembly scheduling: Literature review and future research directions. Int. J. Prod. Res. 2007, 45, 4465–4484. [Google Scholar] [CrossRef]
- Stanfield, P.M.; King, R.E.; Hodgson, T.J. Determining sequence and ready times in a remanufacturing system. IIE Trans. 2006, 38, 565–575. [Google Scholar] [CrossRef]
- Kim, M.G.; Yu, J.M.; Lee, D.H. Scheduling algorithms for remanufacturing systems with parallel flow-shop-type reprocessing lines. Int. J. Prod. Res. 2015, 53, 1819–1831. [Google Scholar] [CrossRef]
- Qu, C.; Fu, Y.; Yi, Z.; Tan, J. Solutions to no-wait flow shop scheduling problem using the flower pollination algorithm based on the hormone modulation mechanism. Complexity 2018, 2018, 1973604. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Tian, G.; Yuan, G.; Pham, D.T. Energy-time tradeoffs for remanufacturing system scheduling using an invasive weed optimization algorithm. J. Intell. Manuf. 2021, 1–19. [Google Scholar] [CrossRef]
- Wang, W.; Tian, G.; Zhang, H.; Xu, K.; Miao, Z. Modeling and scheduling for remanufacturing systems with disassembly, reprocessing, and reassembly considering total energy consumption. Environ. Sci. Pollut. Res. 2021; ahead-of-print. [Google Scholar]
- Guide, V.D.R., Jr. Scheduling using drum-buffer-rope in a remanufacturing environment. Int. J. Prod. Res. 1996, 34, 1081–1091. [Google Scholar] [CrossRef]
- Guide, V.D.R., Jr. Scheduling with priority dispatching rules and drum-buffer-rope in a recoverable manufacturing system. Int. J. Prod. Econ. 1997, 53, 101–116. [Google Scholar]
- Souza, G.C.; Ketzenberg, M.E.; Guide, V.D.R., Jr. Capacitated remanufacturing with service level constraints. Prod. Oper. Manag. 2002, 11, 231–248. [Google Scholar] [CrossRef]
- Guide, V.D.R., Jr.; Souza, G.C.; Van Der Laan, E. Performance of static priority rules for shared facilities in a remanufacturing shop with disassembly and reassembly. Eur. J. Oper. Res. 2005, 164, 341–353. [Google Scholar] [CrossRef]
- Li, L.; Li, C.; Tang, Y. A color petri net based scheduling model for remanufacturing system with stochastic process routing. In Proceedings of the 2014 IEEE International Conference on Automation Science and Engineering (CASE), New Taipei, Taiwan, 18–22 August 2014; pp. 474–479. [Google Scholar]
- Kang, C.; Hong, Y.S. Dynamic disassembly planning for remanufacturing of multiple types of products. Int. J. Prod. Res. 2010, 50, 6236–6248. [Google Scholar] [CrossRef]
- Lin, D.; Teo, C.C.; Lee, C.K.M. Heuristics for integrated job assignment and scheduling in the multi-plant remanufacturing system. Int. J. Prod. Res. 2015, 53, 2674–2689. [Google Scholar] [CrossRef]
- Giglio, D.; Paolucci, M.; Roshani, A. Integrated lot sizing and energy-efficient job shop scheduling problem in manufacturing/remanufacturing systems. J. Clean. Prod. 2017, 148, 624–641. [Google Scholar] [CrossRef]
- Yu, J.M.; Lee, D.H. Scheduling algorithms for job-shop-type remanufacturing systems with component matching requirement. Comput. Ind. Eng. 2018, 120, 266–278. [Google Scholar] [CrossRef]
- Li, L.; Li, C.; Li, L.; Tang, Y. An integrated approach for remanufacturing job shop scheduling with routing alternatives. Math. Biosci. Eng. 2019, 16, 2063–2085. [Google Scholar] [CrossRef]
- Fu, Y.; Zhou, M.C.; Guo, X.; Qi, L. Stochastic multi-objective integrated disassembly-reprocessing-reassembly scheduling via fruit fly optimization algorithm. J. Clean. Prod. 2021, 278, 123364. [Google Scholar] [CrossRef]
- Zhang, W.; Zheng, Y.; Ahmad, R. The integrated process planning and scheduling of flexible job-shop-type remanufacturing systems using improved artificial bee colony algorithm. J. Intell. Manuf. 2022, 1–26. [Google Scholar] [CrossRef]
- Guo, X.; Zhou, M.C.; Abusorrah, A.; Alsokhiry, F.; Sedraoui, K. Disassembly sequence planning: A survey. IEEE/CAA J. Autom. Sin. 2020, 8, 1308–1324. [Google Scholar] [CrossRef]
- Tseng, H.-E.; Chang, C.-C.; Lee, S.-C.; Huang, Y.-M. A block-based genetic algorithm for disassembly sequence planning. Expert Syst. Appl. 2018, 96, 492–505. [Google Scholar] [CrossRef]
- ElSayed, A.; Kongar, E.; Gupta, S.M.; Sobh, T. A robotic-driven disassembly sequence generator for end-of-life electronic products. J. Intell. Robot. Syst. 2012, 68, 43–52. [Google Scholar] [CrossRef]
- Li, H.J.; Jiang, J.; Wang, Y.F. Disassembly sequence planning based on extended interference matrix and genetic algorithm. Comput. Eng. Des. 2013, 34, 1064–1068. [Google Scholar]
- Zhong, L.; Youchao, S.; Okafor, E.G.; Haiqiao, W. Disassembly sequence planning for maintenance based on metaheuristic method. Aircr. Eng. Aerosp. Technol. 2011, 83, 138–145. [Google Scholar] [CrossRef]
- Guo, X.; Zhou, M.; Liu, S.; Qi, L. Lexicographic multiobjective scatter search for the optimization of sequence-dependent selective disassembly subject to multiresource constraints. IEEE Trans. Cybern. 2019, 50, 3307–3317. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, Z.; Pham, D.T.; Xu, W.; Ji, C.; Liu, Q. Robotic disassembly sequence planning using enhanced discrete bees algorithm in remanufacturing. Int. J. Prod. Res. 2018, 56, 3134–3151. [Google Scholar] [CrossRef]
- Tao, F.; Bi, L.; Zuo, Y.; Nee, A.Y.C. Partial/parallel disassembly sequence planning for complex products. J. Manuf. Sci. Eng. 2018, 140, 011016. [Google Scholar] [CrossRef]
- Guo, H.; Chen, Z.; Ren, Y.; Qu, T.; Li, J. Research on disassembly sequence and disassembly length integrated decision of End-of-life products based on parts recovery comprehensive evaluation. J. Mech. Eng. 2022, 58, 258–268. [Google Scholar]
- Ren, Y.; Zhang, C.; Zhao, F.; Xiao, H.; Tian, G. An asynchronous parallel disassembly planning based on genetic algorithm. Eur. J. Oper. Res. 2018, 269, 647–660. [Google Scholar] [CrossRef]
- Ren, Y.; Meng, L.; Zhang, C.; Zhao, F.; Saif, U.; Huang, A.; Mendis, G.P.; Sutherland, J.W. An efficient metaheuristics for a sequence-dependent disassembly planning. J. Clean. Prod. 2020, 245, 118644. [Google Scholar] [CrossRef]
- Ren, Y.; Tian, G.; Zhao, F.; Yu, D.; Zhang, C. Selective cooperative disassembly planning based on multi-objective discrete artificial bee colony algorithm. Eng. Appl. Artif. Intell. 2017, 64, 415–431. [Google Scholar] [CrossRef]
- Lu, Q.; Ren, Y.; Jin, H.; Meng, L.; Li, L.; Zhang, C.; Sutherland, J.W. A hybrid metaheuristic algorithm for a profit-oriented and energy-efficient disassembly sequencing problem. Robot. Comput. Integr. Manuf. 2020, 61, 101828. [Google Scholar] [CrossRef]
- Zhu, B.; Sarigecili, M.I.; Roy, U. Disassembly information model incorporating dynamic capabilities for disassembly sequence generation. Robot. Comput. Integr. Manuf. 2013, 29, 396–409. [Google Scholar] [CrossRef]
- Costa, C.M.; Veiga, G.; Sousa, A.; Rocha, L.; Oliveira, E.; Cardoso, H.L.; Thomas, U. Automatic generation of disassembly sequences and exploded views from solidworks symbolic geometric relationships. In Proceedings of the 2018 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), Torres Vedras, Portugal, 25–27 April 2018; pp. 211–218. [Google Scholar]
- Lambert, A.J.D.; Gupta, S.M. Methods for optimum and near optimum disassembly sequencing. Int. J. Prod. Res. 2008, 46, 2845–2865. [Google Scholar] [CrossRef]
- Ma, Y.S.; Jun, H.B.; Kim, H.W.; Lee, D.-H. Disassembly process planning algorithms for end-of-life product recovery and environmentally conscious disposal. Int. J. Prod. Res. 2011, 49, 7007–7027. [Google Scholar] [CrossRef]
- Behdad, S.; Berg, L.P.; Thurston, D.; Vance, J.M. Leveraging virtual reality experiences with mixed-integer nonlinear programming visualization of disassembly sequence planning under uncertainty. J. Mech. Des. 2014, 136, 041005. [Google Scholar] [CrossRef] [Green Version]
- Gungor, A.; Gupta, S.M. Disassembly line balancing. In Proceedings of the 1999 Annual Meeting of the Northeast Decision Sciences Institute, Newport, RI, USA, 24–26 March 1999. [Google Scholar]
- Özceylan, E.; Kalayci, C.B.; Güngör, A.; Gupta, S.M. Disassembly line balancing problem: A review of the state of the art and future directions. Int. J. Prod. Res. 2019, 57, 4805–4827. [Google Scholar] [CrossRef] [Green Version]
- Yin, T.; Zhang, Z.; Zhang, Y.; Wu, T.; Liang, W. Mixed-integer programming model and hybrid driving algorithm for multi-product partial disassembly line balancing problem with multi-robot workstations. Robot. Comput. Integr. Manuf. 2022, 73, 102251. [Google Scholar] [CrossRef]
- Li, Z.; Janardhanan, M.N. Modelling and solving profit-oriented U-shaped partial disassembly line balancing problem. Expert Syst. Appl. 2021, 183, 115431. [Google Scholar] [CrossRef]
- Wang, K.; Li, X.; Gao, L.; Li, P.; Sutherland, J.W. A discrete artificial bee colony algorithm for multiobjective disassembly line balancing of end-of-life products. IEEE Trans. Cybern. 2021, 52, 7415–7426. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Zhang, C.; Zhao, F.; Triebe, M.J.; Meng, L. An MCDM-based multiobjective general variable neighborhood search approach for disassembly line balancing problem. IEEE Trans. Syst. Man Cybern. Syst. 2018, 50, 3770–3783. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, C.; Zhao, F.; Tian, G.; Lin, W.; Meng, L.; Li, H. Disassembly line balancing problem using interdependent weights-based multi-criteria decision making and 2-Optimal algorithm. J. Clean. Prod. 2018, 174, 1475–1486. [Google Scholar] [CrossRef]
- Ren, Y.; Yu, D.; Zhang, C.; Tian, G.; Meng, L.; Zhou, X. An improved gravitational search algorithm for profit-oriented partial disassembly line balancing problem. Int. J. Prod. Res. 2017, 55, 7302–7316. [Google Scholar] [CrossRef]
- Ren, Y.; Meng, L.; Zhang, C.; Lu, Q.; Tian, G. Multi-criterion decision making for disassembly line balancing problem. Procedia CIRP 2019, 80, 542–547. [Google Scholar] [CrossRef]
- Yılmaz, Ö.F.; Yazıcı, B. Tactical level strategies for multi-objective disassembly line balancing problem with multi-manned stations: An optimization model and solution approaches. Ann. Oper. Res. 2021, 319, 1793–1843. [Google Scholar] [CrossRef]
- Edis, E.B.; Ilgin, M.A.; Edis, R.S. Disassembly line balancing with sequencing decisions: A mixed integer linear programming model and extensions. J. Clean. Prod. 2019, 238, 117826. [Google Scholar] [CrossRef]
- Liu, M.; Liu, X.; Chu, F.; Zheng, F.; Chu, C. Robust disassembly line balancing with ambiguous task processing times. Int. J. Prod. Res. 2020, 58, 5806–5835. [Google Scholar] [CrossRef]
- Budak, A. Sustainable reverse logistics optimization with triple bottom line approach: An integration of disassembly line balancing. J. Clean. Prod. 2020, 270, 122475. [Google Scholar] [CrossRef]
- Han, H.J.; Yu, J.M.; Lee, D.H. Mathematical model and solution algorithms for selective disassembly sequencing with multiple target components and sequence-dependent setups. Int. J. Prod. Res. 2013, 51, 4997–5010. [Google Scholar] [CrossRef]
- Liu, C.; Zhu, Q.; Wei, F.; Rao, W.; Liu, J.; Hu, J.; Cai, W. A review on remanufacturing assembly management and technology. Int. J. Adv. Manuf. Technol. 2019, 105, 4797–4808. [Google Scholar] [CrossRef]
- Su, B.; Huang, X.M.; Ren, Y.H.; Wang, F.; Xiao, H.; Zheng, B. Research on selective assembly method optimization for construction machinery remanufacturing based on ant colony algorithm. J. Mech. Eng. 2017, 53, 60–68. [Google Scholar] [CrossRef]
- Liu, M.; Sun, Z.; Ge, M.; Wang, C.; Wang, Q. Remanufacturing Quality Optimization Method of Complex Mechanical Products Based on Assembly Deviation Degree. China Mech. Eng. 2014, 25, 1473. [Google Scholar]
- Behdad, S.; Thurston, D. Disassembly and reassembly sequence planning tradeoffs under uncertainty for product maintenance. J. Mech. Des. 2012, 134, 041011. [Google Scholar] [CrossRef]
- Su, C.; Shi, Y.; Dou, J. Multi-objective optimization of buffer allocation for remanufacturing system based on TS-NSGAII hybrid algorithm. J. Clean. Prod. 2017, 166, 756–770. [Google Scholar] [CrossRef]
- Li, C.; Feng, Y.; Du, Y. Decision-making method for used components remanufacturing process plan based on modified FNN. Comput. Integr. Manuf. Syst. 2016, 22, 728–737. [Google Scholar]
- Oh, Y.; Behdad, S. Simultaneous reassembly and procurement planning in assemble-to-order remanufacturing systems. Int. J. Prod. Econ. 2017, 184, 168–178. [Google Scholar] [CrossRef]
- Lahmar, H.; Dahane, M.; Mouss, N.K.; Haoues, M. Production planning optimisation in a sustainable hybrid manufacturing remanufacturing production system. Procedia Comput. Sci. 2022, 200, 1244–1253. [Google Scholar] [CrossRef]
- Polotski, V.; Kenne, J.P.; Gharbi, A. Joint production and maintenance optimization in flexible hybrid Manufacturing–Remanufacturing systems under age-dependent deterioration. Int. J. Prod. Econ. 2019, 216, 239–254. [Google Scholar] [CrossRef]
- Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–73. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gelatt, C.D., Jr.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef]
- Glover, F.; Laguna, M. Tabu search. In Handbook of Combinatorial Optimization; Springer: Boston, MA, USA, 1998; pp. 2093–2229. [Google Scholar]
- Bengio, Y.; Lodi, A.; Prouvost, A. Machine learning for combinatorial optimization: A methodological tour d’horizon. Eur. J. Oper. Res. 2021, 290, 405–421. [Google Scholar] [CrossRef]
- Lei, K.; Guo, P.; Wang, Y.; Wu, X.; Zhao, X. Solve routing problems with a residual edge-graph attention neural network. Neurocomputing 2022, 508, 79–98. [Google Scholar] [CrossRef]
- Yang, C.; Xu, W.; Liu, J.; Yao, B.; Hu, Y. Robotic Disassembly Sequence Planning Considering Robotic Movement State Based on Deep Reinforcement Learning. In Proceedings of the 2022 IEEE 25th International Conference on Computer Supported Cooperative Work in Design (CSCWD), Hangzhou, China, 4–6 May 2022; pp. 183–189. [Google Scholar]
Article | Area | Perspectives |
---|---|---|
[2] | Facility location in RL | A comprehensive review of remanufacturing RL and closed-loop supply chain network design. |
[3] | Facility location in RL | A review of various quantitative models that have been proposed to solve RL network design. |
[4] | VRP in RL | Extensively analyzed the existing literature of the VRP in RL to identify the current trends, research gaps, and the limitations in the adaptability to real world. |
[5] | VRP in RL | Reviewed the major contribution about waste collection in VRP. |
[8] | DLBP in remanufacturing | Reviewed recent models to summarize the input data, parameters, decision variables, constraints, and objectives of the DLBP. |
[9] | DSP in remanufacturing | Reviewed the existing DSP methods from the perspectives of disassembly mode, disassembly modelling, and planning method. |
[10] | Scheduling in remanufacturing | Classified the scheduling literature in remanufacturing into single and multiple products, disassembly, and integrated scheduling, and further subdivided through part capacity, commonality, and deterministic/stochastic parameters. |
NO | Years | Type | Num. of Objectives | Products | Solution |
---|---|---|---|---|---|
[13] | 2010 | MINLP | One (maximize profit) | Tire retreading | Lingo 8.0 |
[15] | 2012 | MILP | One (maximize profit) | Washing machines and tumble dryers | CPLEX |
[21] | 2014 | P-MILP | One (minimize the total cost) | Hypothetical problem | Genetic algorithm |
[22] | 2014 | M-MILP | Three (minimize total cost, ensure equity among different firms, and provide stable product flow to each company within the planning scope) | Electrical waste and electronic equipment | CPLEX |
[16] | 2015 | MILP | One (maximize profit) | Washing machines and tumble dryers | CPLEX |
[17] | 2016 | MILP | One (maximize profit) | Vehicles | CPLEX |
[18] | 2017 | MILP | One (maximize profit) | Genetic algorithm | |
[14] | 2018 | MINLP | One (maximize profit) | Waste recycling | Hybrid genetic algorithm |
[19] | 2019 | MILP | One (minimize the total cost) | Lithium-ion batteries | Three-phase heuristic |
[20] | 2020 | MILP | One (maximize profit) | Numerical research | CPLEX |
NO | Years | Type | Objectives | Network Stages | Solution | Outputs |
---|---|---|---|---|---|---|
[24] | 2010 | MILP | MC, MEI | SC, PC, DC, CZ, RYC | E | FL, PA, I, PT, TM, CR |
[30] | 2011 | MILP | MC, MEI, MS | SC, PC, DC, CZ, CC, RDC, RCC, RMC, RYC, DIC | OM | SO, FL, A, PA, PT, TA, NP |
[31] | 2012 | SMIP | MC | SC, PC, DC, CZ, CC, RDC, RCC, RMC, RYC, DIC | OM | SO, FL, A, PA, PT, TA, NP |
[25] | 2012 | MILP | MC | PC, DC, RCC | OM | FL, FC, A, PA |
[27] | 2014 | FMIP | MC, MEI | PC, CZ, CC, RCC (Steel), RCC(Plastic), DIC | IFS | FL, TA, PA, NP |
[32] | 2015 | SMIP | MC | CZ, CZ, CC, RDC, RCC, DIC | E | FL, TA, QND |
[26] | 2016 | MINLP | MC | SC, PC, CZ, W, DC, RMC, RCC | E, OM | FC, TA, UP, I, NP |
[28] | 2017 | MILP | MC | SC, PC, DC, CZ, D, RMC, RDC, DIC | GA | FL, PA, TA |
[29] | 2018 | MILP | MC, MEI | CC, DC, CZ, SC, RYC | OM | FL, A, NP, CS, TA |
[33] | 2019 | MINLP | MC, MEI, MS | SC, PC, DC, CZ, CC, RDC, RCC, RMC, RYC, DIC | OM | SO, FL, A, PA, PT, TA, NP, DC |
Item | Content | Notation |
---|---|---|
Objectives | Min cost/max profit | MC |
Min environment impacts | MEI | |
Max social benefits | MS | |
Network Stages | Supply centers | SC |
Production centers | PC | |
Distribution centers | DC | |
Warehouses | W | |
Customer zones (retail outlets) | CZ | |
Collection/inspection centers | CC | |
Dismantlers | D | |
Redistribution centers | RDC | |
Recovering centers | RCC | |
Remanufacturing centers | RMC | |
Recycling centers | RYC | |
Disposal/incineration centers | DIC | |
Solution Method | Exact | E |
Genetic-algorithm-based | GA | |
Other metaheuristics | OM | |
Interactive fuzzy solution approach | IFS | |
Outputs | Suppliers/orders | SO |
Facilities location | FL | |
Facility capacity | FC | |
Allocation | A | |
Discount | DC | |
Production amount | PA | |
Utilization of production centers | UP | |
Production technology | PT | |
Transportation amount | TA | |
Transportation mode | TM | |
Number of vehicles | NV | |
Inventory | I | |
Number of used products which are processed | NP | |
Carbon credits sold/purchased | CS | |
Quantity of non-satisfied demand | QND |
Area | Methods | Reference |
---|---|---|
Facility location and VRP in RL | Lingo | [13,25,31,40] |
CPLEX | [15,16,17,20,22,30,37,38,39,42] | |
Branch and bound | [36,51,57,60,63] | |
Scheduling in remanufacturing | CPLEX | [77] |
Dynamic programming | [87] | |
Disassembly in remanufacturing | CPLEX | [143] |
Improved augmented Epsilon constraint | [145] |
Area | Methods | Reference |
---|---|---|
Facility location and VRP in RL | Genetic algorithm | [14,18,21,23,24,43,49] |
Three-phase heuristic approach | [19] | |
Three different hybridization methods | [27] | |
Hybrid genetic algorithm and particle swarm optimization | [32] | |
Ant colony algorithm | [26,48] | |
Imperialist competitive algorithm | [28] | |
Tri-level metaheuristics | [29] | |
Hybrid Keshtel and genetic algorithm | [33] | |
Parallel differential evolutionary algorithm | [55] | |
Simulated annealing | [49] | |
Two-phased heuristic | [50] | |
Insertion-based heuristics | [56] | |
Tabu search | [58,61] | |
Neighborhood search | [59,62,63] | |
Scheduling in remanufacturing | Genetic algorithm | [83,102,109] |
Two-phased heuristic | [67,75,82,105] | |
One-to-many heuristic One-to-one heuristic | [69] | |
Greedy algorithm | [74] | |
Simulated annealing | [79,111] | |
Particle swarm optimization | [80,87,96] | |
Fruit fly optimization | [89,113] | |
Hybrid genetic algorithm | [84,85,88,90,91,92,93,95] | |
CDS | [98] | |
Nawaz–Enscore–Ham-based | [75,99] | |
Priority-rule-based heuristic | [75] | |
Integrated gradients | [75] | |
Flower pollination algorithm | [100] | |
Multi-objective invasive weed optimization | [101] | |
Hybrid metaheuristic using simulated annealing and tabu search | [107] | |
Hybrid metaheuristic using SA and MST rule | [112] | |
Artificial bee colony algorithm | [114] | |
Disassembly in remanufacturing | Genetic algorithm | [116,117,118,124,125] |
Particle swarm optimization | [119] | |
Scatter search algorithm | [120] | |
Discrete bees algorithm | [121,126,127,137] | |
Tabu search | [122,151] | |
Variable neighborhood search | [127,138] | |
Greedy search algorithm | [129] | |
Two-phase algorithm | [131] | |
Hybrid driving algorithm based on a three-layer encoding method | [135] | |
Discrete cuckoo search | [136] | |
2-optimal algorithm | [139] | |
Gravitational search algorithm | [140] | |
Fast-ranking heuristic approach | [141] | |
Non-dominated sorting genetic algorithm-II | [142,151,154] | |
Two-stage parameter-adjusting heuristic | [144] | |
Branch and fathoming algorithm | [146] | |
Ant colony algorithm | [148] | |
Simulated annealing genetic algorithm | [149] |
Area | Methods | Reference |
---|---|---|
Facility location and VRP in RL | Integrating the sample average approximation scheme with an importance sampling strategy | [34] |
ReCiPe life cycle assessment methodology | [41] | |
Fermatean fuzzy CRITIC-EDAS approach | [47] | |
Scheduling in remanufacturing | Reverse material requirement planning algorithm | [64,65,72] |
Fuzzy goal programming technique | [70] | |
Outer approximation-based solution algorithm | [80] | |
Dynamic window approach | [94] | |
Drum–buffer–rope-based scheduling approach | [103,104] | |
Disassembly in remanufacturing | Choquet integral | [123] |
Immersive computing technology | [132] | |
Multi-attribute utility analysis Takagi–Sugeno fuzzy neural network | [150] [152] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Y.; Lu, X.; Guo, H.; Xie, Z.; Zhang, H.; Zhang, C. A Review of Combinatorial Optimization Problems in Reverse Logistics and Remanufacturing for End-of-Life Products. Mathematics 2023, 11, 298. https://doi.org/10.3390/math11020298
Ren Y, Lu X, Guo H, Xie Z, Zhang H, Zhang C. A Review of Combinatorial Optimization Problems in Reverse Logistics and Remanufacturing for End-of-Life Products. Mathematics. 2023; 11(2):298. https://doi.org/10.3390/math11020298
Chicago/Turabian StyleRen, Yaping, Xinyu Lu, Hongfei Guo, Zhaokang Xie, Haoyang Zhang, and Chaoyong Zhang. 2023. "A Review of Combinatorial Optimization Problems in Reverse Logistics and Remanufacturing for End-of-Life Products" Mathematics 11, no. 2: 298. https://doi.org/10.3390/math11020298
APA StyleRen, Y., Lu, X., Guo, H., Xie, Z., Zhang, H., & Zhang, C. (2023). A Review of Combinatorial Optimization Problems in Reverse Logistics and Remanufacturing for End-of-Life Products. Mathematics, 11(2), 298. https://doi.org/10.3390/math11020298