A Dynamical Model with Time Delay for Risk Contagion
Abstract
:1. Introduction
1.1. Contagion Risk in the Financial Sector
1.2. Supply Chain Finance and Other Transmission Channels
1.3. Credit Channel Contagion
1.4. Our Contribution
2. Time-Delayed Dynamics
- Susceptible firms: This refers to some entities with lower risk that are vulnerable to infection by other firms with high risk, and therefore the possibility of becoming a high risk firm increase;
- Infected firms: This refers to firms which are infectious, whose risk is extremely high and who can infect other firms;
- Recovered firms: This refers to firms with the capability of risk control after infection, and which can keep their risk at a low level and be not infectious.
2.1. Positivity of Solutions
2.2. The Existence of Steady States
3. Steady-State Stability
3.1. Free-Risk Steady-State Stability
- in the case when , we get
- in the opposite case when , we have
3.2. Endemic Steady-State Stability
3.3. Discussion
4. Numerical Simulation: The Case Study of Food Sector for the Emilia Romagna Italian Region
- immunity is set at and incubation gets different lengths as ;
- immunity is set at and incubation gets different lengths as .
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Evaluating the History Function I0 (·)
- n = 7; P = polyfit([-9:1:0],V,n);
- m = 100; t = linspace(-9,0,m); I0 = polyval(P,t);
- plot(t,I0,’r–’,[-9:1:0],V,’ok’,[-9:1:0],V,’*k’).
References
- Claessens, S.; Forbes, K. International Financial Contagion; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- May, R.M.; Levin, S.A.; Sugihara, G. Complex systems: Ecology for bankers. Nature 2008, 451, 893–895. [Google Scholar] [CrossRef] [Green Version]
- Garas, A.; Argyrakis, P.; Rozenblat, C. Worldwide spreading of economic crisis. New J. Phys. 2012, 12, 185–188. [Google Scholar] [CrossRef]
- Xie, X.; Shi, X.; Gu, J.; Xu, X. Examining the Contagion Effect of Credit Risk in a Supply Chain under Trade Credit and Bank Loan Offering. Omega 2023, 115, 102751. [Google Scholar] [CrossRef]
- Jiang, S.; Fan, H. Credit risk contagion coupling with sentiment contagion. Phys. A Stat. Mech. Its Appl. 2018, 512, 186–202. [Google Scholar] [CrossRef]
- Jorion, P.; Zhang, G. Credit contagion from counterparty risk. J. Financ. 2009, 64, 2053–2087. [Google Scholar] [CrossRef]
- Boido, C.; Aliano, M. Digital art and non-fungible-token: Bubble or revolution? Financ. Res. Lett. 2022. in Press. [Google Scholar] [CrossRef]
- Haldane, A.G.; May, R.M. Systemic risk in banking ecosystems. Nature 2011, 469, 351–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roukny, T.; Bersini, H.; Pirotte, H.; Caldarelli, G.; Battiston, S. Default cascades in complex networks: Topology and systemic risk. Sci. Rep. 2013, 3, 2759. [Google Scholar] [CrossRef] [Green Version]
- Leonidova, A.V.; Rumyantsevb, E.L. Default contagion risks in Russian interbank market. Phys. A Stat. Mech. Its Appl. 2016, 451, 36–48. [Google Scholar] [CrossRef] [Green Version]
- Callon, M. Techno-economic Networks and Irreversibility. Sociol. Rev. 1990, 38, 132–161. [Google Scholar] [CrossRef]
- Babus, A. The formation of financial networks. Rand. J. Econ. 2016, 47, 239–272. [Google Scholar] [CrossRef] [Green Version]
- Battiston, S.; Caldarelli, G. Systemic risk in financial networks. J. Financ. Manag. Mark. Inst. 2013, 1, 129–154. [Google Scholar]
- Feinstein, Z. Financial contagion and asset liquidation strategies. Oper. Res. Lett. 2017, 45, 109–114. [Google Scholar] [CrossRef] [Green Version]
- Caldarelli, G.; Battiston, S.; Garlaschelli, D.; Catanzaro, M. Emergence of Complexity in Financial Networks; Ben-Naim, E., Frauenfelder, H., Toroczkai, Z., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 399–423. [Google Scholar]
- Aït-Sahalia, Y.; Cacho-Diaz, J.; Laeven, R.J.A. Modeling financial contagion using mutually exciting jump processes. J. Financ. Econ. 2015, 117, 585–606. [Google Scholar] [CrossRef] [Green Version]
- Barja, A.; Martínez, A.; Arenas, A.; Fleurquin, P.; Nin, J.; Ramasco, J.J.; Tomás, E. Assessing the risk of default propagation in interconnected sectoral financial networks. EPJ Data Sci. 2019, 8, 32. [Google Scholar] [CrossRef] [Green Version]
- Torri, G.; Radi, D.; Dvořáčková, H. Catastrophic and systemic risk in the non-life insurance sector: A micro-structural contagion approach. Financ. Res. Lett. 2022, 47, 102718. [Google Scholar] [CrossRef]
- Han, L. Controlling Default Contagion Through Small-World Networks. Procedia Comput. Sci. 2019, 154, 47–53. [Google Scholar] [CrossRef]
- Previati, A.D.; Aliano, M.; Galloppo, G.; Paimanova, V. Why do banks react differently to short-selling bans? Evidence from the Asia-Pacific area and the United States. Q. Rev. Econ. Financ. 2021, 80, 144–158. [Google Scholar] [CrossRef]
- Akerlof, G.A.; Shiller, R.J. Animal Spirits: How Human Psychology Drives the Economy, and Why It Matters for Global Capitalism; Princeton University: Princeton, NJ, USA, 2009. [Google Scholar]
- Adekoya, O.B.; Oliyide, J.A. Commodity and financial markets’ fear before and during COVID-19 pandemic: Persistence and causality analyses. Resour. Policy 2022, 76, 102598. [Google Scholar] [CrossRef]
- Giot, P. Relationships between implied volatility indexes and stock index returns. J. Portfolio Manag. 2005, 31, 92–100. [Google Scholar] [CrossRef] [Green Version]
- Economou, F.; Panagopoulos, Y.; Tsouma, E. Uncovering asymmetries in the relationship between fear and the stock market using a hidden-co-integration approach. Res. Int. Bus. Financ. 2018, 44, 459–470. [Google Scholar] [CrossRef]
- Chen, X.; Chiang, T.C. Empirical investigation of changes in policy uncertainty on stock returns- Evidence from China’s market. Res. Int. Bus. Financ. 2020, 53, 101183. [Google Scholar] [CrossRef]
- Filbeck, G.; Kumar, S.; Liu, J.; Zhao, X. Supply chain finance and financial contagion from disruptions evidence from the automobile industry. Int. J. Phys. Distrib. Logist. Manag. 2016, 46, 414–438. [Google Scholar] [CrossRef]
- Lian, Y. Financial distress and customer-supplier relationships. J. Corp. Financ. 2017, 43, 397–406. [Google Scholar] [CrossRef]
- Agca, S.; Babich, V.; Birge, J.R.; Wu, J. Credit shock propagation along supply chains: Evidence from the CDS market. Manag. Sci. 2021, 68, 6506–6538. [Google Scholar] [CrossRef]
- Barro, D.; Basso, A. Credit contagion in a network of firms with spatial interaction. Eur. J. Oper. Res. 2010, 205, 459–468. [Google Scholar] [CrossRef] [Green Version]
- Barreto, G.; Artes, F. Spatial correlation in credit risk and its improvement in credit scoring. Eur. J. Oper. Res. 2016, 249, 517–524. [Google Scholar]
- Calabrese, R.; Andreeva, G.; Ansell, J. ’Birds of a feather’ fail together: Exploring the nature of dependency in SME defaults. Risk Anal. 2019, 39, 71–84. [Google Scholar] [CrossRef] [Green Version]
- Maté-Sánchez-Val, M.; Lóopez-Hernandez, F.; Rodriguez Fuentes, C.C. Geographical factors and business failure: An empirical study from the Madrid metropolitan area. Econ. Model. 2018, 74, 275–283. [Google Scholar] [CrossRef]
- Shi, Q.; Sun, X.; Jiang, Y. Concentrated commonalities and systemic risk in China’s banking system: A contagion network approach. Int. Rev. Financ. Anal. 2022, 83, 102253. [Google Scholar] [CrossRef]
- Egloff, D.; Leippold, M.; Vanini, P. A simple model of credit contagion. J. Bank. Financ. 2007, 31, 2475–2492. [Google Scholar] [CrossRef]
- Hertzel, M.G.; Li, Z.; Officer, M.S.; Rodgers, K.J. Inter-firm linkages and the wealth effects of financial distress along the supply chain. J. Financ. Econ. 2008, 87, 374–387. [Google Scholar] [CrossRef]
- Escribano, E.; Maggi, M. Intersectoral default contagion: A multivariate Poisson autoregression analysis. Econ. Model. 2016, 82, 376–400. [Google Scholar] [CrossRef]
- Calabrese, R. Contagion effects of UK small business failures: A spatial hierarchical autoregressive model for binary data. Eur. J. Oper. Res. 2022, 305, 989–997. [Google Scholar] [CrossRef]
- Fanelli, V.; Maddalena, L. A nonlinear dynamic model for credit risk contagion. Math. Comput. Simul. 2020, 170, 45–58. [Google Scholar] [CrossRef]
- Xua, K.; Qianb, Q.; Xiec, X.; Zhoud, Z. Study on the contagion mechanism of associated credit risk with corporate senior executives’ alertness. Procedia Comput. Sci. 2022, 199, 207–214. [Google Scholar] [CrossRef]
- Dawes, J.H.P.; Souza, M.O. A derivation of Holling’s type I, II and III functional responses in predator–prey systems. J. Theor. Biol. 2013, 327, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Holling, C.S. The components of predation as revealed by a study of small-mammal predation of the European sawfly. Can. Entomol. 1959, 91, 293–320. [Google Scholar] [CrossRef]
- Holling, C.S. Some characteristics of simple types of predation and parasitism. Can. Entomol. 1959, 91, 385–398. [Google Scholar] [CrossRef]
- Baker, C.M.; Armsworth, P.R.; Lenhart, S.M. Handling overheads: Optimal multi-method invasive species control. Theor. Ecol. 2017, 10, 493–501. [Google Scholar] [CrossRef] [Green Version]
- Baker, C.M.; Diele, F.; Marangi, C.; Martiradonna, A.; Ragni, S. Optimal spatiotemporal effort allocation for invasive species removal incorporating a removal handling time and budget. Nat. Resour. Model. 2018, 31, e12190. [Google Scholar] [CrossRef]
- Marangi, C.; Casella, F.; Diele, F.; Lacitignola, D.; Martiradonna, A.; Provenzale, A.; Ragni, S. Mathematical tools for controlling invasive species in protected areas. In Mathematical Approach to Climate Change and Its Impacts; Springer: Berlin/Heidelberg, Germany, 2020; pp. 211–237. [Google Scholar]
- Marangi, C.; Martiradonna, A.; Ragni, S. Optimal resource allocation for spatiotemporal control of invasive species. Appl. Math. Comput. 2023, 439, 127614. [Google Scholar] [CrossRef]
- Kyrychko, Y.N.; Blyuss, K.B. Global properties of a delayed SIR model with temporary immunity and nonlinear incidence rate. Nonlinear Anal. Real World Appl. 2005, 6, 495–507. [Google Scholar] [CrossRef]
- Zhao, C.; Li, M.; Wang, J.; Ma, S. The mechanism of credit risk contagion among internet P2P lending platforms based on a SEIR model with time-lag. Res. Int. Bus. Financ. 2021, 57, 101407. [Google Scholar] [CrossRef]
- Diekmann, O.; Van Gils, S.A.; Lunel, S.M.; Walther, H.O. Delay Equations: Functional-, Complex-, and Nonlinear Analysis; Springer: Berlin/Heidelberg, Germany, 2012; Volume 110. [Google Scholar]
- Richard, J.P. Time-delay systems:an overview of some recent advances and open problems. Automatica 2003, 39, 1667–1694. [Google Scholar] [CrossRef]
- Li, B.; Kuang, Y. Simple food chain in a chemostat with distinct removal rates. J. Math. Anal. Appl. 2000, 242, 75–92. [Google Scholar] [CrossRef] [Green Version]
- Beretta, E.; Kuang, Y. Modeling and analysis of a marine bacteriophage infection with latency period. Nonlinear Anal. 2001, 2, 35–74. [Google Scholar] [CrossRef]
- Kuang, Y. Delay Differential Equations with Applications in Population Biology; Academic Press: NewYork, NJ, USA, 1993. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aliano, M.; Cananà, L.; Cestari, G.; Ragni, S. A Dynamical Model with Time Delay for Risk Contagion. Mathematics 2023, 11, 425. https://doi.org/10.3390/math11020425
Aliano M, Cananà L, Cestari G, Ragni S. A Dynamical Model with Time Delay for Risk Contagion. Mathematics. 2023; 11(2):425. https://doi.org/10.3390/math11020425
Chicago/Turabian StyleAliano, Mauro, Lucianna Cananà, Greta Cestari, and Stefania Ragni. 2023. "A Dynamical Model with Time Delay for Risk Contagion" Mathematics 11, no. 2: 425. https://doi.org/10.3390/math11020425
APA StyleAliano, M., Cananà, L., Cestari, G., & Ragni, S. (2023). A Dynamical Model with Time Delay for Risk Contagion. Mathematics, 11(2), 425. https://doi.org/10.3390/math11020425