Asymptotic Behavior and Oscillation of Third-Order Nonlinear Neutral Differential Equations with Mixed Nonlinearities
Abstract
:1. Introduction
- (1)
- , , and are constants;
- (2)
- such that
- (3)
- satisfying for .
2. Main Results
- If then ;
- If then
- (H)
- or
- (H)
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Agarwal, R.P.; Grace, S.R.; O’Regan, D. Oscillation Theory for Difference and Functional Differential Equations; Kluwer: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Agarwal, R.P.; Grace, S.R.; O’Regan, D. Oscillation Theory for Second Order Dynamic Equations; Taylor & Francis: London, UK, 2003. [Google Scholar]
- Erbe, L.H.; Hassan, T.S.; Peterson, A. Oscillation of third-order nonlinear functional dynamic equations on time scales. Differ. Equ. Dyn. Syst. 2010, 18, 199–227. [Google Scholar] [CrossRef]
- Erbe, L.H.; Kong, Q.; Zhan, B.Z. Oscillation Theory for Functional Differential Equations; Marcel Dekker: New York, NY, USA, 1995. [Google Scholar]
- Jadlovská, I.; Chatzarakis, G.E.; Džurina, J.; Grace, S.R. On Sharp Oscillation Criteria for General Third-Order Delay Differential Equations. Mathematics 2021, 9, 1675. [Google Scholar] [CrossRef]
- Yang, L.; Xu, Z. Oscillation of certain third-order quasilinear neutral differential equations. Math. Slovaca 2014, 64, 85–100. [Google Scholar] [CrossRef]
- Gyori, I.; Hartung, F. Stability of a single neuron model with delay. J. Comput. Appl. Math. 2003, 157, 73–92. [Google Scholar] [CrossRef] [Green Version]
- Gyori, I.; Ladas, G. Oscillation Theory of Delay Differential Equations With Applications; Clarendon Press: Oxford, UK, 1991. [Google Scholar]
- Hale, J.; Lunel, S.M.V. Introduction to Functional Differential Equations; Springer: New York, NY, USA, 1993. [Google Scholar]
- Padhi, S.; Pati, S. Theory of Third-Order Differential Equations; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Ladas, G.; Sficas, Y.G.; Stavroulakis, I.P. Necessary and sufficient conditions for oscillations of higher order delay differential equations. Trans. Am. Math. Soc. 1984, 285, 81–90. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Bohner, M.; Li, T.; Zhang, C. Oscillation of third-order nonlinear delay differential equations. Taiwan. J. Math. 2013, 17, 545–558. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Grace, S.R.; O’Regan, D. On the oscillation of certain functional differential equations via comparison methods. J. Math. Anal. Appl. 2003, 286, 577–600. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.P.; Grace, S.R.; O’Regan, D. The oscillation of certain higher order functional differential equations. Adv. Math. Comput. Modell. 2003, 37, 705–728. [Google Scholar] [CrossRef]
- Baculíková, B.; Džurina, J. Oscillation of third-order nonlinear differential equations. Appl. Math. Lett. 2011, 24, 466–470. [Google Scholar] [CrossRef] [Green Version]
- Baculíková, B.; Džurina, J.; Rogovchenko, Y.V. Oscillation of third-order trinomial delay differential equations. Appl. Math. Comput. 2012, 248, 7023–7033. [Google Scholar] [CrossRef]
- Baculíková, B.; Elabbasy, E.M.; Saker, S.H.; žurina, J.D. Oscillation criteria for third- order nonlinear differential equations. Math. Slovaca 2008, 58, 201–220. [Google Scholar] [CrossRef]
- Chatzarakis, G.E.; Džurina, J.; Jadlovská, I. Oscillatory and asymptotic properties of third-order quasilinear delay differential equations. J. Inequal. Appl. 2019, 23, 17. [Google Scholar] [CrossRef] [Green Version]
- Chatzarakis, G.E.; Grace, S.R.; Jadlovská, I. Oscillation criteria for third-order delay differential equations. Adv. Differ. Equ. 2017, 2017, 330. [Google Scholar] [CrossRef] [Green Version]
- Grace, S.R.; Agarwal, R.P.; Pavani, R.; Thandapani, E. On the oscilation certain third-order nonlinear functional differential equations. Appl. Math. Comput. 2008, 202, 102–112. [Google Scholar]
- Hassan, T.S.; El-Matary, B.M. Oscillation Criteria for Third-Order Nonlinear Neutral Differential Equation. PLOMS Math. 2021, 1, 12. [Google Scholar]
- Kitamura, Y. Oscillation of functional differential equations with general deviating arguments. Hiroshima Math. J. 1985, 15, 445–491. [Google Scholar] [CrossRef]
- Ladde, G.S.; Lakshmikantham, V.; Zhang, B.G. Oscillation Theory of Differential Equations with Deviating Arguments; Macel Dekker: New York, NY, USA, 1987. [Google Scholar]
- Li, T.; Rogovchenko, Y.V. On the asymptotic behavior of solutions to a class of third-order nonlinear neutral differential equations. Appl. Math. Lett. 2020, 105, 106293. [Google Scholar] [CrossRef]
- Li, T.; Zhang, C.; Xing, G. Oscillation of third-order neutral delay differential equations. Abstr. Appl. Anal. 2012, 2012, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Moaaz, O.; Dassios, I.; Muhsin, W.; Muhib, A. Oscillation theory for non-linear neutral delay differential equations of third-order. Appl. Sci. 2020, 10, 4855. [Google Scholar] [CrossRef]
- Graef, J.R.; Savithri, R.; Thandapani, E. Oscillatory properties of third-order neutral delay differential equations. Discret. Contin. Dyn. Syst. A 2003, 2003, 342–350. [Google Scholar]
- Baculíková, B.; Džurina, J. Oscillation of third-order functional differential equations. Electron. J. Qual. Theory Differ. Equ. 2010, 43, 1–10. [Google Scholar] [CrossRef]
- Hassan, T.S.; Kong, Q. Interval criteria for forced oscillation of differential equations with p-Laplacian, damping, and mixed nonlinearities. Dyn. Syst. Appl. 2011, 20, 279–294. [Google Scholar]
- Sun, Y.G.; Wong, J.S. Oscillation criteria for second order forced ordinary differential equations with mixed nonlinearities. J. Math. Anal. Appl. 2007, 344, 549–560. [Google Scholar] [CrossRef] [Green Version]
- Hassan, T.S.; Erbe, L.; Peterson, A. Forced oscillation of second order functional differential equations with mixed nonlinearities. Acta Math. Sci. 2011, 31B, 613–626. [Google Scholar] [CrossRef]
- Ozbekler, A.; Zafer, A. Oscillation of solutions of second order mixed nonlinear differential equations under impulsive perturbations. Comput. Math. Appl. 2011, 61, 933–940. [Google Scholar] [CrossRef] [Green Version]
- Elabbasy, E.M.; Hassan, T.S.; Elmatary, B.M. Oscillation criteria for third-order delay nonlinear differential equations. Electron. J. Qual. Theory Differ. Equ. 2012, 5, 1–11. [Google Scholar] [CrossRef]
- Beckenbach, E.F.; Bellman, R. Inequalities; Springer: Berlin/Heidelberg, Germany, 1961. [Google Scholar]
- Philos, C.G. On the existence of nonoscillatory solutions tending to zero at ∞ to differential equations with positive delays. Arch. Math. 1981, 36, 168–178. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, T.S.; El-Matary, B.M. Asymptotic Behavior and Oscillation of Third-Order Nonlinear Neutral Differential Equations with Mixed Nonlinearities. Mathematics 2023, 11, 424. https://doi.org/10.3390/math11020424
Hassan TS, El-Matary BM. Asymptotic Behavior and Oscillation of Third-Order Nonlinear Neutral Differential Equations with Mixed Nonlinearities. Mathematics. 2023; 11(2):424. https://doi.org/10.3390/math11020424
Chicago/Turabian StyleHassan, Taher S., and Bassant M. El-Matary. 2023. "Asymptotic Behavior and Oscillation of Third-Order Nonlinear Neutral Differential Equations with Mixed Nonlinearities" Mathematics 11, no. 2: 424. https://doi.org/10.3390/math11020424
APA StyleHassan, T. S., & El-Matary, B. M. (2023). Asymptotic Behavior and Oscillation of Third-Order Nonlinear Neutral Differential Equations with Mixed Nonlinearities. Mathematics, 11(2), 424. https://doi.org/10.3390/math11020424