Maps Preserving Zero ∗-Products on ℬ(ℋ)
Abstract
:1. Introduction
2. Preliminaries
- denotes the real number field.
- denotes the complex number field.
- denote the complex Hilbert spaces with dimensions greater than two.
- denotes all bounded linear operators on .
- denotes all bounded linear operators on .
- denotes the set of all self-adjoint operators of .
- denotes the set of projections of .
- denotes the set of one-rank projections of .
- denotes the linear manifold spanned by .
- .
- .
- for any .
- for any .
- denotes the subspace generated by x and y.
- denotes the inner product of x and y.
- denotes the kernel space of A for any .
3. Proof of Theorem 1
4. Proof of Theorem 2
5. Proof of Theorem 3
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bu, L.; Ji, G. Convex Sequential Product Automorphisms on the Positive Cone of a Factor von Neumann Algebra. Acta Math. Sin. 2023. Available online: http://kns.cnki.net/kcms/detail/11.2038.o1.20230323.0953.006.html (accessed on 11 October 2023).
- Zhang, R.; Ji, G. Factorization for finite subdiagonal algebras of type 1. Arch. Math. 2023, 120, 183–194. [Google Scholar] [CrossRef]
- Song, Y.; Ji, G. Maps Preserving the Truncation of Operators on Positive Cones. Rocky Mt. J. Math. 2023. Available online: https://projecteuclid.org/journals/rmjm/rocky-mountain-journal-of-mathematics/DownloadAcceptedPapers/220330-GuoxingJi.pdf (accessed on 11 October 2023).
- Zhang, R.; Shi, W.; Ji, G. Additive Mappings Preserving Fredholm Operators with Fixed Nullity or Defect. Acta Math. Sci. 2021, 41, 1670–1678. [Google Scholar] [CrossRef]
- Li, C.K.; Tsai, M.C.; Wang, Y.S.; Wong, N.C. Linear maps preserving matrices annihilated by a fixed polynomial. Linear Algebra Appl. 2023, 674, 46–67. [Google Scholar] [CrossRef]
- Qi, X.; Hou, J.; Wang, W. Strong 3-skew commutativity preserving maps on prime rings with involution. Commun. Algebra 2023, 51, 3854–3872. [Google Scholar] [CrossRef]
- Zhang, T.; Qi, X. α-z-Rényi relative entropy related quantities and their preservers. Banach J. Math. Anal. 2023, 17, 22. [Google Scholar] [CrossRef]
- Hosseinzadeh, R. Additive maps preserving the fixed points of Jordan products of operators. Wavelet Linear Algebra 2022, 9, 31–36. [Google Scholar]
- Ji, G.; Jiao, X.; Shi, W. Nonlinear maps preserving semi-Fredholm operators with bounded nullity. Quaest. Math. 2023, 46, 1415–1421. [Google Scholar] [CrossRef]
- Hosseinzadeh, R. Maps strongly preserving the square zero of λ-Lie product of operators. Khayyam J. Math. 2021, 7, 109–114. [Google Scholar]
- Cui, J.; Hou, J. Linear maps on von Neumann algebras preserving zero products or TR-rank. Bull. Aust. Math. Soc. 2002, 65, 79–91. [Google Scholar]
- Chebotar, M.; Ke, W.F.; Lee, P.H. Maps characterized by action on zero products. Pac. J. Math. 2004, 216, 217–228. [Google Scholar] [CrossRef]
- Chebotar, M.; Ke, W.F.; Lee, P.H. Maps preserving zero Jordan products on Hermitian operators. Ill. J. Math. 2005, 49, 445–452. [Google Scholar] [CrossRef]
- Chebotar, M.; Ke, W.F.; Lee, P.H.; Wong, N. Mappings preserving zero products. Stud. Math. 2003, 155, 77–94. [Google Scholar] [CrossRef]
- Chebotar, M.; Ke, W.F.; Lee, P.H.; Zhang, R. On maps preserving zero Jordan products. Monatshefte Math. 2006, 149, 91–101. [Google Scholar] [CrossRef]
- Šemrl, P. Linear mappings preserving square-zero matrices. Bull. Aust. Math. Soc. 1993, 48, 365–370. [Google Scholar] [CrossRef]
- Wong, W. Maps on simple algebras preserving zero products. I. The associative case. Pac. J. Math. 1980, 89, 229–247. [Google Scholar] [CrossRef]
- Wang, Y. A note on maps characterized by actions on zero products. Algebra Colloq. 2006, 13, 685–687. [Google Scholar] [CrossRef]
- Alaminos, J.; Brešar, M.; Extremra, J.; Villena, A. Maps preserving zero products. Stud. Math. 2009, 193, 131–159. [Google Scholar] [CrossRef]
- Alaminos, J.; Brešar, M.; Extremra, J.; Villena, A. Characterizing Jordan maps on C∗-algebras trough zero products. Proc. Edinb. Math. 2010, 53, 543–555. [Google Scholar] [CrossRef]
- Hou, J.; Zhao, L. Zero-product preserving additive maps on symmetric operator spaces an self-adjoint operator spaces. Linear Algebra Appl. 2005, 399, 235–244. [Google Scholar] [CrossRef]
- Hou, J.; Zhao, L. Jordan Zero-product preserving additive maps on operator algebras. J. Math. Anal. Appl. 2006, 314, 689–700. [Google Scholar]
- Dobovišek, M.; Kuzma, B.; Lexsxnjak, G.; Li, C.K.; Petek, T. Mappings that preserve pairs of operators with zero triple Jordan product. Linear Algebra Appl. 2007, 426, 255–279. [Google Scholar] [CrossRef]
- Botta, P.; Pierce, S.; Watkins, W. Linear transformations that preserve the nilpotent matrices. Pac. J. Math. 1983, 104, 39–46. [Google Scholar] [CrossRef]
- Clark, S.; Li, C.K.; Rodman, L. Spectral radius preservers of products of nonnegative matrices. Banach J. Math. Anal. 2008, 2, 107–120. [Google Scholar] [CrossRef]
- Fang, L.; Ji, G. Linear maps preserving products of positive or Hermitian matrices. Linear Algebra Appl. 2006, 419, 601–611. [Google Scholar] [CrossRef]
- Fang, L.; Ji, G.; Pang, Y. Maps preserving the idempotency of products of operators. Linear Algebra Appl. 2007, 426, 40–52. [Google Scholar] [CrossRef]
- Ji, G.; Gao, Y. Maps preserving operator pairs whose products are projections. Linear Algebra Appl. 2010, 433, 1348–1364. [Google Scholar] [CrossRef]
- Ji, G.; Qu, F. Linear maps preserving projections of products of operators. Acta Math. Sin. 2010, 53, 315–322. [Google Scholar]
- Li, C.K.; Šemrl, P.; Sze, N.S. Maps preserving the nilpotency of products of operators. Linear Algebra Appl. 2007, 424, 22. [Google Scholar] [CrossRef]
- Cui, J.; Li, C.K. Maps preserving product XY-YX∗ on factor von Neumann algebras. Linear Algebra Appl. 2009, 431, 833–842. [Google Scholar] [CrossRef]
- Wang, M.; Ji, G. A characterization of ∗-isomorphism on factor von Neumann algebras. Acta Math. Sin. 2015, 58, 71–78. [Google Scholar]
- Wang, M.; Ji, G. Maps preserving ∗-Lie product on factor von Neumann algebras. Linear Multilinear Algebra 2016, 64, 2159–2168. [Google Scholar] [CrossRef]
- Qi, X.; Hou, J.; Cui, J. Additive maps preserving zero skew ξ-Lie products. Sci. Sin. 2015, 45, 151–165. [Google Scholar]
- Conway, J.B. A Course in Functional Analysis; Springer: New York, NY, USA, 1990. [Google Scholar]
- Pearcy, C.; Topping, D. Sums of small numbers of idempotents. Mich. Math. J. 1967, 14, 453–465. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Zhang, J.; Li, Y.; Shangguan, L. Maps Preserving Zero ∗-Products on ℬ(ℋ). Mathematics 2023, 11, 4278. https://doi.org/10.3390/math11204278
Wang M, Zhang J, Li Y, Shangguan L. Maps Preserving Zero ∗-Products on ℬ(ℋ). Mathematics. 2023; 11(20):4278. https://doi.org/10.3390/math11204278
Chicago/Turabian StyleWang, Meili, Jing Zhang, Yipeng Li, and Lina Shangguan. 2023. "Maps Preserving Zero ∗-Products on ℬ(ℋ)" Mathematics 11, no. 20: 4278. https://doi.org/10.3390/math11204278
APA StyleWang, M., Zhang, J., Li, Y., & Shangguan, L. (2023). Maps Preserving Zero ∗-Products on ℬ(ℋ). Mathematics, 11(20), 4278. https://doi.org/10.3390/math11204278