Effects of LTNE on Two-Component Convective Instability in a Composite System with Thermal Gradient and Heat Source
Abstract
:1. Introduction
2. Materials and Methods
3. Method of Solution
4. Condition of Solvability
5. Thermal Gradients
5.1. Model (i): Linear Thermal Gradient
5.2. Model (ii): Parabolic Thermal Gradient
5.3. Model (iii): Inverted Parabolic Thermal Gradient
5.4. Model (iv): Piecewise Linear Gradient Heated from Below
5.5. Model (v): Piecewise Linear Gradient Cooled from Above
5.6. Model (vi): Step Function
6. Results and Discussion
7. Conclusions
- (i)
- The onset of TCRB convection is supported by a corrected internal Rayleigh number in region-I and the solute Rayleigh number. By increasing the system’s instability, the six profiles speed up the beginning of TCRB convection with the corrected internal Rayleigh number in region-I and the solute Rayleigh number.
- (ii)
- When applied to each of the six profiles, the thermal ratio, the thermal diffusivity ratio, the porous parameter, and the corrected internal Rayleigh number all work together to postpone the onset of TCRB convection.
- (iii)
- In a combined structure arrangement with region-I on top, the parabolic profile is more stable than the step function, but in a setup with region-II on top, the step function takes the lead.
- (iv)
- The PLHB structure exhibits the highest stability among the combined structures in region-II, whereas the linear structure demonstrates the lowest stability.
- (v)
- The commencement of TCRB convection in a composite fluid and porous layer system may be efficiently controlled by selecting the proper parameters.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
English Letters | Greek Letters | ||
Wave numbers | Reference density, kg/m3 | ||
Concentrations, mol/m3 | Fluid and porous layer density, kg/m3 | ||
Reference concentration, mol/m3 | Fluid viscosity and porous viscosity, kg/ms | ||
Specific heat capacity, J/kg∙K | Temperature difference, K | ||
Concentrate difference, mol/m3 | |||
Darcy number | Thermal diffusivities in fluid and porous layer, m2/s | ||
Thickness, m | Solute diffusivity ratio | ||
Depth ratio | Thermal diffusivity of fluid and solid phase in porous layer, m2/s | ||
Gravity, m/s2 | Thermal expansion coefficients in fluid and porous layer, 1/K | ||
Scaled interface heat transfer coefficient, W/mK | Thermal expansion coefficients in fluid and solid phase in porous layer, 1/K | ||
Inter-phase heat transfer, W/m2/K | Solute thermal expansion coefficients in fluid and porous layer, 1/K | ||
Permeability, H/m | Inter-phase thermal diffusivity ratio, m2/s | ||
(0, 0, 1) | Thermal diffusivity ratio, m2/s | ||
Pressure, kg m−1s−2 | Solute thermal diffusivity ratios, m2/s | ||
Velocity vectors, m/s | Amplitude of perturbed temperature, K | ||
Critical Rayleigh number | Porous parameter | ||
Solute Rayleigh numbers | Porosity | ||
Rayleigh numbers | Viscosity ratio | ||
Internal Rayleigh numbers | Subscripts | ||
Corrected internal Rayleigh numbers | Basic state | ||
Solute ratio | Fluid layer | ||
Amplitude of perturbed concentration | Porous layer | ||
Temperatures, K | Fluid phase porous layer | ||
Interface temperature, K | Solid phase porous layer | ||
Thermal ratio | Fluid layer salinity | ||
Dimensionless vertical velocities | Porous layer salinity | ||
Fluid and porous layer temperature gradient |
Appendix A
References
- Wang, P.; Vafai, K.; Liu, D.Y. Analysis of radiative effect under local thermal non-equilibrium conditions in porous media-application to a solar air receiver. Numer. Heat Transf. Part A Appl. 2014, 65, 931–948. [Google Scholar] [CrossRef]
- Altawallbeh, A.A.; Hashim, I.; Tawalbeh, A.A. Thermal non-equilibrium double diffusive convection in a Maxwell fluid with internal heat source. J. Phys. Conf. Ser. 2018, 1132, 012027. [Google Scholar] [CrossRef]
- Altawallbeh, A.A.; Hashim, I.; Bhadauria, B.S. Magneto-double diffusive convection in a viscoelastic fluid saturated porous layer with internal heat source. AIP Conf. Proc. 2019, 2116, 030015. [Google Scholar] [CrossRef]
- Abidin, N.H.; Mokhtar, N.F.; Majid, Z.A. Onset of Bènard-Marangoni instabilities in a double diffusive binary fluid layer with temperature dependent viscosity. Numer. Algebra Control Optim. 2019, 9, 413–421. [Google Scholar] [CrossRef]
- Komala, B.; Sumithra, R. Effects of non-uniform salinity gradients on the onset of double diffusive magneto—Marangoni convection in a composite layer. Int. J. Adv. Sci. Technol. 2019, 28, 874–885. [Google Scholar]
- Kuznetsov, A.V.; Nield, D.A. Effect of local thermal non-equilibrium on the onset of convection in a porous medium layer saturated by a nanofluid. Transp. Porous Med. 2010, 83, 425–436. [Google Scholar] [CrossRef]
- Thumma, T.; Mishra, S.R. Effect of nonuniform heat source/sink, and viscous and Joule dissipation on 3D Eyring–Powell nanofluid flow over a stretching sheet. J. Comput. Des. Eng. 2020, 7, 412–426. [Google Scholar] [CrossRef]
- Prabha, G.S.; Bharathi, M.C.; Kudenatti, R.B. Heat transfer through mixed convection boundary layer in a porous medium: LTNE analysis. Appl. Therm. Eng. 2020, 179, 115705. [Google Scholar] [CrossRef]
- Kannan, R.M.; Pullepu, B. Numerical solutions of double diffusive convective flow past a chemical reactive vertically inclined infinite plate with heat source/sink. Adv. Math. Sci. J. 2020, 9, 1623–1636. [Google Scholar] [CrossRef]
- Astanina, M.S.; Sheremet, M.; Umavathi, C.J. Unsteady natural convection in a partially porous cavity having a heat-generating source using local thermal non-equilibrium model. Int. J. Numer. Methods Heat Fluid Flow 2019, 29, 1902–1919. [Google Scholar] [CrossRef]
- Hema, M.; Shivakumara, I.S.; Ravisha, M. Double diffusive LTNE porous convection with Cattaneo effects in the solid. Heat Transf. 2020, 49, 3613–3629. [Google Scholar] [CrossRef]
- Nadian, P.K.; Pundir, R.; Pundir, S.K. Study of double–diffusive convection in a rotating couple stress ferromagnetic fluid in the presence of varying gravitational field and horizontal magnetic field saturating in a porous medium. J. Math. Comput. Sci. 2021, 11, 1784–1809. [Google Scholar]
- Shukla, S.; Gupta, U. LTNE effects on triple-diffusive convection in nanofluids. ASME J. Heat. Transf. 2022, 144, 092501. [Google Scholar] [CrossRef]
- Mahajan, A.; Tripathi, V.K. Stability of a chemically reacting double-diffusive fluid layer in a porous medium. Heat Transf. 2021, 50, 6148–6163. [Google Scholar] [CrossRef]
- Meften, G.A.; Ali, A.H. Continuous dependence for double diffusive convection in a Brinkman model with variable viscosity. Acta Univ. Sapientiae Math. 2022, 14, 125–146. [Google Scholar] [CrossRef]
- Capone, F.; Gianfrani, J.A. Natural convection in a fluid saturating an anisotropic porous medium in LTNE: Effect of depth-dependent viscosity. Acta Mech. 2022, 233, 4535–4548. [Google Scholar] [CrossRef]
- Capone, F.; Gianfrani, J.A. Thermal convection for a Darcy–Brinkman rotating anisotropic porous layer in local thermal non-equilibrium. Ric. Mat. 2022, 71, 227–243. [Google Scholar] [CrossRef]
- Abed Meften, G.; Ali, A.H.; Al-Ghafri, K.S.; Awrejcewicz, J.; Bazighifan, O. Nonlinear stability and linear instability of double-diffusive convection in a rotating with LTNE Effects and symmetric properties: Brinkmann-Forchheimer model. Symmetry 2022, 14, 565. [Google Scholar] [CrossRef]
- Akram, S.; Athar, M.; Saeed, K.; Umair, M.Y. Nanomaterials effects on induced magnetic field and double-diffusivity convection on peristaltic transport on Prandtl nanofluids in inclined asymmetric channel. Nanomater. Nanotechnol. 2022, 12, 18479804211048630. [Google Scholar] [CrossRef]
- Tayebi, T.; Dahmane, F.; Jamshed, W.; Chamkha, A.J.; El Din, S.M.; Raizah, Z. Double diffusive magneto-natural convection of nano fluid in an enclosure equipped with a wavy porous cylinder in the local thermal non-equilibrium situation. Case Stud. Therm. Eng. 2023, 43, 102785. [Google Scholar] [CrossRef]
- Siddabasappa, C.; Siddehwar, P.G.; Mallikarjunaih, S.M. Analytical study of Brinkman-Bènard convection in a bidisperse porous medium: Linear and weakly nonlinear study. Therm. Sci. Eng. Prog. 2023, 39, 101696. [Google Scholar] [CrossRef]
- Noon, N.J.; Haddad, S.A. Stability Analysis of double diffusive convection in local thermal non-equilibrium porous medium with Internal heat source and reaction effects. J. Non-Equilib. Thermodyn. 2023, 48, 25–39. [Google Scholar] [CrossRef]
- Corcione, M.; Quintino, A. Double-Diffusive effects on the onset of Rayleigh-Benard convection of water-based nanofluids. Appl. Sci. 2022, 12, 8485. [Google Scholar] [CrossRef]
- Gangadharaiah, Y.H.; Manjunatha, N.; Udhayakumar, R.; Almarri, B.; Elshenhab, A.M.; Honnappa, N. Darcy–Brinkman double diffusive convection in an anisotropic porous layer with gravity fluctuation and throughflow. Mathematics 2023, 11, 1287. [Google Scholar]
- Mehdy, A.N. Double diffusive free convection in a packed bed square enclosure by using local thermal non-equilibrium model. J. Eng. 2023, 18, 121–136. [Google Scholar] [CrossRef]
- Jakhar, A.; Kumar, A. Instability analysis of double diffusive convection under time dependent solute boundary conditions in the presence of internal heat generator. Phys. Fluids 2023, 35, 077101. [Google Scholar] [CrossRef]
- Yellamma; Narayanappa, M.; Udhayakumar, R.; Almarri, B.; Ramakrishna, S.; Elshenhab, A.M. The impact of heat source and temperature gradient on Brinkman–Bènard triple-diffusive magneto-Marangoni convection in a two-layer system. Symmetry 2023, 15, 644. [Google Scholar] [CrossRef]
- Rudolph, P.; Wang, W.; Tsukamoto, K.; Wu, D. Transport phenomena of crystal growth-heat and mass transfer. AIP Conf. Proc. 2010, 1270, 107–132. [Google Scholar]
- Sumithra, R.; Venkatraman, S. Local thermal non-equilibrium dominant Darcy-Rayleigh-Bènard-magneto-Marangoni convection in a composite layer. J. Mines Met. Fuels 2022, 70, 1–12. [Google Scholar] [CrossRef]
- Nield, D.A.; Bejan, A. Convection in Porous Media, 3rd ed.; Springer: New York, NY, USA, 2006. [Google Scholar]
- Manjunatha, N.; Khan, U.; Elattar, S.; Eldin, S.M.; Chohan, J.S.; Sumithra, R.; Sarada, K. Onset of triple-diffusive convective stability in the presence of a heat source and temperature gradients: An exact method. AIMS Math. 2023, 8, 13432–13453. [Google Scholar]
- Rudraiah, N.; Veerappa, B.; Balachandra, R.S. Effects of nonuniform thermal gradient and adiabatic boundaries on convection in porous media. J. Heat Transf. 1980, 102, 254. [Google Scholar] [CrossRef]
- Vasseur, P.; Robillard, L. The Brinkman model for natural convection in a porous layer: Effects of nonuniform thermal gradient. Int. J. Heat Mass. Transf. 1993, 36, 4199. [Google Scholar] [CrossRef]
- Shivakumara, I.S. Onset of convection in a couple-stress fluid-saturated porous medium: Effects of non-uniform temperature gradients. Arch. Appl. Mech. 2010, 80, 949–957. [Google Scholar] [CrossRef]
Model | Thermal Gradients | Fluid Layer (Region-I) | Porous Layer (Region-II) |
---|---|---|---|
Model (i) | Linear | ||
Model (ii) | Parabolic | ||
Model (iii) | Inverted parabolic | ||
Model (iv) | Piecewise linear gradient heated from below (PLHB) | ||
Model (v) | Piecewise linear gradient cooled from above (PLCA) | ||
Model (vi) | Step function (SF) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balaji, V.K.; Narayanappa, M.; Udhayakumar, R.; AlNemer, G.; Ramakrishna, S.; Honnappa, G.Y. Effects of LTNE on Two-Component Convective Instability in a Composite System with Thermal Gradient and Heat Source. Mathematics 2023, 11, 4282. https://doi.org/10.3390/math11204282
Balaji VK, Narayanappa M, Udhayakumar R, AlNemer G, Ramakrishna S, Honnappa GY. Effects of LTNE on Two-Component Convective Instability in a Composite System with Thermal Gradient and Heat Source. Mathematics. 2023; 11(20):4282. https://doi.org/10.3390/math11204282
Chicago/Turabian StyleBalaji, Varalakshmi K., Manjunatha Narayanappa, Ramalingam Udhayakumar, Ghada AlNemer, Sumithra Ramakrishna, and Gangadharaih Yeliyur Honnappa. 2023. "Effects of LTNE on Two-Component Convective Instability in a Composite System with Thermal Gradient and Heat Source" Mathematics 11, no. 20: 4282. https://doi.org/10.3390/math11204282
APA StyleBalaji, V. K., Narayanappa, M., Udhayakumar, R., AlNemer, G., Ramakrishna, S., & Honnappa, G. Y. (2023). Effects of LTNE on Two-Component Convective Instability in a Composite System with Thermal Gradient and Heat Source. Mathematics, 11(20), 4282. https://doi.org/10.3390/math11204282