On Consistency of the Nearest Neighbor Estimator of the Density Function for m-AANA Samples
Abstract
:1. Introduction
2. Preliminary Lemmas
3. Main Results
4. Numerical Simulation
5. Proof of the Main Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Loftsgarden, D.O.; Quesenberry, C.P. A nonparametric estimate of a multivariate density function. Ann. Math. Stat. 1965, 36, 1049–1051. [Google Scholar] [CrossRef]
- Liu, Y.H.; Wu, Q.Y. Consistency of nearest neighbor estimator of density function for negatively dependent samples. J. Jilin Univ. 2012, 50, 1142–1145. [Google Scholar]
- Lu, Z.L.; Ding, S.N.; Zhang, F.; Wang, R.; Wang, X.J. The consistency and convergence rate for the nearest neighbor density estimator based on φ-mixing random samples. Commun. Stat.-Theory Methods 2022, 51, 669–684. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y. The consistency and asymptotic normality of nearest neighbor density estimator under φ-mixing condition. Acta Math. Sin. 2010, 30, 733–738. [Google Scholar]
- Yang, S.C. Consistency of nearest neighbor estimator of density function for negative associated samples. Acta Math. Appl. Sin. 2003, 26, 385–395. [Google Scholar]
- Wang, X.J.; Hu, H.S. The consistency of the nearest neighbor estimator of the density function based on WOD samples. J. Math. Anal. Appl. 2015, 429, 497–512. [Google Scholar] [CrossRef]
- Lan, C.F.; Wu, Q.Y. Uniform Strong Consistency Rate of Nearest Neighbor Estimator of Density Function for END Samples. J. Jilin Univ. 2014, 52, 495–498. [Google Scholar]
- Wang, W.; Wu, Y. Consistency of nearest neighbor estimator of density function for m-END samples. Braz. J. Probab. Stat. 2022, 36, 369–384. [Google Scholar] [CrossRef]
- Chandra, T.K.; Ghosal, S. Extensions of the strong law of large numbers of Marcinkiewicz and Zygmund for dependent variables. Acta Math. Hung. 1996, 71, 327–336. [Google Scholar] [CrossRef]
- Kim, T.; Ko, M.; Lee, I. On the strong law for asymptotically almost negatively associated random variables. Rocky Mt. J. Math. 2004, 34, 979–989. [Google Scholar] [CrossRef]
- Yuan, D.M.; An, J. Rosenthal type inequalities for asymptotically almost negatively associated random variables and applications. Sci. China Ser. A Math. 2009, 52, 1887–1904. [Google Scholar] [CrossRef]
- Chandra, T.K.; Ghosal, S. The strong law of large numbers for weighted averages under dependence assumptions. J. Theor. Probab. 1996, 9, 797–809. [Google Scholar] [CrossRef]
- Shen, A.T.; Wu, R.C. Strong convergence for sequences of asymptotically almost negatively associated random variables. Stochastics-Int. J. Probab. Stoch. Process. 2014, 86, 291–303. [Google Scholar] [CrossRef]
- Yuan, D.M.; An, J. Laws of large numbers for Cesàro alpha-integrable random variables under dependence condition AANA or AQSI. Acta Math. Sin. 2012, 28, 1103–1118. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, X.J. On Consistency of the Nearest Neighbor Estimator of the Density Function and Its Applications. Acta Math. Sin. 2019, 35, 703–720. [Google Scholar] [CrossRef]
- Nam, T.H.; Thuy, N.T.; Hu, T.C.; Volodin, A. Maximal inequalities and strong law of large numbers for sequences of m-asymptotically almost negatively associated random variables. Commun. Stat.-Theory Methods 2016, 46, 2696–2707. [Google Scholar] [CrossRef]
Estimators | |||||||||
---|---|---|---|---|---|---|---|---|---|
ABias | RMSE | ABias | RMSE | ABias | RMSE | ABias | RMSE | ||
nearest neighbor | 0.07513 | 0.07521 | 0.06881 | 0.06884 | 0.06062 | 0.06064 | 0.05455 | 0.05456 | |
frequency | 0.00996 | 0.05338 | 0.00073 | 0.00681 | 0.00049 | 0.00421 | 0.00021 | 0.00345 | |
kernel | 0.00102 | 0.00827 | 0.00062 | 0.00597 | 0.00055 | 0.00435 | 0.00023 | 0.00306 | |
histogram | 0.00048 | 0.01018 | 0.00026 | 0.00720 | 0.00170 | 0.00436 | 0.00028 | 0.00377 | |
nearest neighbor | 0.06779 | 0.06823 | 0.06132 | 0.06162 | 0.05254 | 0.05268 | 0.04602 | 0.04612 | |
frequency | 0.00362 | 0.02606 | 0.00361 | 0.01935 | 0.00326 | 0.01296 | 0.00232 | 0.01059 | |
kernel | 0.00303 | 0.02625 | 0.00232 | 0.02022 | 0.00177 | 0.01357 | 0.00160 | 0.01109 | |
histogram | 0.07034 | 0.03137 | 0.01985 | 0.02798 | −0.01545 | 0.02166 | 0.01523 | 0.01837 | |
nearest neighbor | 0.00113 | 0.02717 | 0.00081 | 0.02108 | 0.00053 | 0.01543 | 0.00053 | 0.01263 | |
frequency | 0.00252 | 0.04723 | 0.00081 | 0.04873 | 0.00067 | 0.02424 | 0.00032 | 0.02708 | |
kernel | 0.00119 | 0.05112 | 0.00238 | 0.03798 | 0.00161 | 0.02682 | 0.00136 | 0.02187 | |
histogram | 0.03560 | 0.07545 | 0.00353 | 0.053270 | 0.04199 | 0.05295 | 0.00349 | 0.02816 | |
nearest neighbor | 0.02042 | 0.05259 | 0.01371 | 0.04031 | 0.00963 | 0.02860 | 0.00854 | 0.02147 | |
frequency | 0.01325 | 0.05293 | 0.01086 | 0.04271 | 0.00658 | 0.03040 | 0.00584 | 0.02284 | |
kernel | 0.00741 | 0.06047 | 0.00504 | 0.04741 | 0.00359 | 0.03413 | 0.00336 | 0.02526 | |
histogram | 0.01467 | 0.08489 | 0.01040 | 0.06492 | 0.00689 | 0.04507 | 0.00633 | 0.03474 | |
nearest neighbor | 0.00106 | 0.02738 | 0.00042 | 0.02209 | 0.00015 | 0.01542 | 0.00011 | 0.01206 | |
frequency | 0.00055 | 0.04615 | 0.00045 | 0.04985 | 0.00040 | 0.02470 | 0.00041 | 0.02743 | |
kernel | 0.00147 | 0.05031 | 0.00066 | 0.03776 | 0.00044 | 0.02680 | 0.00035 | 0.02131 | |
histogram | 0.07177 | 0.10530 | 0.08878 | 0.10489 | 0.03915 | 0.05692 | 0.06573 | 0.07274 | |
nearest neighbor | 0.06767 | 0.06812 | 0.06132 | 0.06158 | 0.05256 | 0.05270 | 0.04601 | 0.04610 | |
frequency | 0.00413 | 0.02620 | 0.00444 | 0.01990 | 0.00340 | 0.01307 | 0.00181 | 0.01024 | |
kernel | 0.00377 | 0.02602 | 0.00269 | 0.02079 | 0.00214 | 0.01401 | 0.00105 | 0.010646 | |
histogram | 0.05344 | 0.07064 | 0.02396 | 0.03920 | 0.02081 | 0.02901 | 0.01517 | 0.02162 | |
nearest neighbor | 0.07521 | 0.07528 | 0.06886 | 0.06891 | 0.06056 | 0.06058 | 0.05463 | 0.05464 | |
frequency | 0.00031 | 0.00954 | 0.00037 | 0.00685 | 0.00073 | 0.00400 | 0.00010 | 0.00338 | |
kernel | 0.00055 | 0.00775 | 0.00052 | 0.00582 | 0.00050 | 0.00418 | 0.00018 | 0.00306 | |
histogram | 0.01169 | 0.02231 | 0.00880 | 0.01486 | 0.00289 | 0.00709 | 0.00482 | 0.00742 |
Estimators | |||||||||
---|---|---|---|---|---|---|---|---|---|
ABias | RMSE | ABias | RMSE | ABias | RMSE | ABias | RMSE | ||
nearest neighbor | 0.07937 | 0.08512 | 0.07047 | 0.07557 | 0.06200 | 0.06529 | 0.05413 | 0.05700 | |
frequency | 0.05327 | 0.06563 | 0.04324 | 0.05447 | 0.03510 | 0.04427 | 0.02271 | 0.02801 | |
kernel | 0.05503 | 0.06888 | 0.04300 | 0.05439 | 0.02891 | 0.03614 | 0.02245 | 0.02760 | |
histogram | 0.08357 | 0.09896 | 0.07807 | 0.09017 | 0.07992 | 0.08971 | 0.02819 | 0.03487 | |
nearest neighbor | 0.03234 | 0.04047 | 0.02504 | 0.03128 | 0.01759 | 0.02166 | 0.01335 | 0.01664 | |
frequency | 0.04927 | 0.06188 | 0.04007 | 0.05044 | 0.03334 | 0.04124 | 0.01986 | 0.02491 | |
kernel | 0.04893 | 0.06156 | 0.03944 | 0.04890 | 0.02663 | 0.03332 | 0.02040 | 0.02552 | |
histogram | 0.06777 | 0.08469 | 0.04864 | 0.06130 | 0.03455 | 0.04433 | 0.02638 | 0.03333 | |
nearest neighbor | 0.01586 | 0.01996 | 0.01234 | 0.01603 | 0.00910 | 0.01165 | 0.00705 | 0.00898 | |
frequency | 0.04376 | 0.05452 | 0.03050 | 0.03800 | 0.02394 | 0.02996 | 0.01349 | 0.01714 | |
kernel | 0.03614 | 0.04503 | 0.02806 | 0.03482 | 0.01943 | 0.02416 | 0.01475 | 0.01833 | |
histogram | 0.04599 | 0.05764 | 0.03562 | 0.04456 | 0.02888 | 0.03656 | 0.02029 | 0.02558 | |
nearest neighbor | 0.01592 | 0.01860 | 0.01238 | 0.01427 | 0.00930 | 0.01061 | 0.00733 | 0.00832 | |
frequency | 0.02479 | 0.03077 | 0.02090 | 0.02603 | 0.01604 | 0.020318 | 0.00909 | 0.01148 | |
kernel | 0.02559 | 0.03209 | 0.01918 | 0.02377 | 0.01320 | 0.01662 | 0.00985 | 0.01238 | |
histogram | 0.03294 | 0.04127 | 0.02325 | 0.02916 | 0.01824 | 0.02381 | 0.01302 | 0.01638 | |
nearest neighbor | 0.02162 | 0.02211 | 0.01833 | 0.01864 | 0.01465 | 0.01483 | 0.01221 | 0.01235 | |
frequency | 0.01690 | 0.02115 | 0.01460 | 0.01878 | 0.01023 | 0.01286 | 0.00621 | 0.00784 | |
kernel | 0.01717 | 0.02170 | 0.01262 | 0.01621 | 0.00861 | 0.01073 | 0.00669 | 0.00840 | |
histogram | 0.02260 | 0.02991 | 0.01564 | 0.02034 | 0.01209 | 0.01539 | 0.00849 | 0.01072 | |
nearest neighbor | 0.02283 | 0.02293 | 0.02012 | 0.02019 | 0.01680 | 0.01684 | 0.01441 | 0.01444 | |
frequency | 0.01327 | 0.01601 | 0.00923 | 0.01197 | 0.00666 | 0.00838 | 0.00386 | 0.00495 | |
kernel | 0.01026 | 0.01298 | 0.00823 | 0.01044 | 0.00562 | 0.00708 | 0.00416 | 0.00534 | |
histogram | 0.01335 | 0.01611 | 0.00962 | 0.01247 | 0.00720 | 0.00915 | 0.00518 | 0.00666 |
Estimators | |||||||||
---|---|---|---|---|---|---|---|---|---|
ABias | RMSE | ABias | RMSE | ABias | RMSE | ABias | RMSE | ||
nearest neighbor | 0.07610 | 0.07633 | 0.06950 | 0.06971 | 0.06052 | 0.06056 | 0.05461 | 0.05464 | |
frequency | 0.00930 | 0.01622 | 0.00652 | 0.01128 | 0.00645 | 0.00749 | 0.00496 | 0.00588 | |
kernel | 0.00832 | 0.01284 | 0.00710 | 0.01021 | 0.00684 | 0.00807 | 0.00444 | 0.00536 | |
histogram | 0.00815 | 0.01663 | 0.00757 | 0.01188 | 0.00703 | 0.00814 | 0.00563 | 0.00635 | |
nearest neighbor | 0.06923 | 0.07070 | 0.06118 | 0.06196 | 0.05715 | 0.05762 | 0.04669 | 0.04682 | |
frequency | 0.03861 | 0.04881 | 0.02607 | 0.03371 | 0.01926 | 0.02511 | 0.01853 | 0.02361 | |
kernel | 0.03808 | 0.04823 | 0.02820 | 0.03432 | 0.02276 | 0.03059 | 0.01802 | 0.02188 | |
histogram | 0.04937 | 0.05914 | 0.03343 | 0.03839 | 0.02003 | 0.02545 | 0.01756 | 0.02350 | |
nearest neighbor | 0.03631 | 0.04775 | 0.03392 | 0.04506 | 0.01997 | 0.02303 | 0.00912 | 0.00912 | |
frequency | 0.06229 | 0.07671 | 0.07247 | 0.08903 | 0.02984 | 0.03644 | 0.03866 | 0.03866 | |
kernel | 0.06957 | 0.08409 | 0.05274 | 0.06531 | 0.02978 | 0.03729 | 0.01678 | 0.01678 | |
histogram | 0.09321 | 0.08409 | 0.07434 | 0.09125 | 0.05200 | 0.05696 | 0.03899 | 0.03899 | |
nearest neighbor | 0.07075 | 0.08889 | 0.04916 | 0.06248 | 0.04165 | 0.04875 | 0.03089 | 0.03813 | |
frequency | 0.07385 | 0.09206 | 0.05638 | 0.06542 | 0.05210 | 0.06610 | 0.03407 | 0.04322 | |
kernel | 0.08064 | 0.10095 | 0.06331 | 0.07623 | 0.06388 | 0.08090 | 0.03431 | 0.04535 | |
histogram | 0.11434 | 0.14591 | 0.08077 | 0.09885 | 0.06366 | 0.07957 | 0.04986 | 0.06241 | |
nearest neighbor | 0.03835 | 0.05063 | 0.03149 | 0.04136 | 0.02109 | 0.02732 | 0.01697 | 0.02093 | |
frequency | 0.06490 | 0.08186 | 0.07414 | 0.08815 | 0.03691 | 0.04265 | 0.03429 | 0.04344 | |
kernel | 0.07212 | 0.09097 | 0.05512 | 0.06931 | 0.03643 | 0.04574 | 0.02777 | 0.03529 | |
histogram | 0.11180 | 0.14016 | 0.10962 | 0.13703 | 0.06845 | 0.08603 | 0.06755 | 0.08356 | |
nearest neighbor | 0.06930 | 0.07076 | 0.06486 | 0.06573 | 0.05061 | 0.05079 | 0.04127 | 0.04130 | |
frequency | 0.03604 | 0.04665 | 0.02133 | 0.02786 | 0.01916 | 0.02315 | 0.01822 | 0.01687 | |
kernel | 0.03724 | 0.04655 | 0.02060 | 0.02754 | 0.01864 | 0.02148 | 0.01502 | 0.01845 | |
histogram | 0.08088 | 0.10331 | 0.04690 | 0.06046 | 0.02693 | 0.02977 | 0.02277 | 0.02503 | |
nearest neighbor | 0.07593 | 0.07617 | 0.06940 | 0.06952 | 0.06054 | 0.06056 | 0.05479 | 0.05480 | |
frequency | 0.00771 | 0.01406 | 0.00754 | 0.01303 | 0.00444 | 0.00444 | 0.00354 | 0.00390 | |
kernel | 0.00831 | 0.01153 | 0.00781 | 0.01102 | 0.00511 | 0.00576 | 0.00350 | 0.00388 | |
histogram | 0.02136 | 0.03534 | 0.01559 | 0.02350 | 0.00573 | 0.00655 | 0.01239 | 0.01605 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Wu, Y.; Wang, W.; Zhu, Y. On Consistency of the Nearest Neighbor Estimator of the Density Function for m-AANA Samples. Mathematics 2023, 11, 4391. https://doi.org/10.3390/math11204391
Liu X, Wu Y, Wang W, Zhu Y. On Consistency of the Nearest Neighbor Estimator of the Density Function for m-AANA Samples. Mathematics. 2023; 11(20):4391. https://doi.org/10.3390/math11204391
Chicago/Turabian StyleLiu, Xin, Yi Wu, Wei Wang, and Yong Zhu. 2023. "On Consistency of the Nearest Neighbor Estimator of the Density Function for m-AANA Samples" Mathematics 11, no. 20: 4391. https://doi.org/10.3390/math11204391
APA StyleLiu, X., Wu, Y., Wang, W., & Zhu, Y. (2023). On Consistency of the Nearest Neighbor Estimator of the Density Function for m-AANA Samples. Mathematics, 11(20), 4391. https://doi.org/10.3390/math11204391