Enhancing Autonomous Guided Vehicles with Red-Black TOR Iterative Method
Abstract
:1. Introduction
2. Materials and Methods
Begin | |
Step 1: Create a map of the robot’s region; | |
Step 2: Initiate the formulation and modeling of the iterative schemes; | |
Step 3: Formulate and execute the proposed iterative schemes algorithms; | |
Step 4: Perform numerical simulations to obtain the solutions; | |
Step 5: Evaluate the performances and algorithms complexity analysis. | |
End |
2.1. Block Iterative Techniques
2.2. Red-Black Strategy
2.3. Finite Difference Schemes
Standard Modified over Relaxation Schemes
3. Block over Relaxation Schemes
Red-Black Block Modified over Relaxation Schemes
Algorithm 1: Red-Black Block MTOR scheme. |
|
4. Numerical Results
Computational Complexity
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Methods | ||||
---|---|---|---|---|
B-SOR | 1.81 | - | - | - |
B-MSOR | 1.83 | 1.81 | - | - |
B-AOR | 1.81 | - | 1.84 | - |
B-MAOR | 1.82 | 1.81 | 1.84 | - |
B-TOR | 1.81 | - | 1.84 | 1.85 |
B-MTOR | 1.80 | 1.81 | 1.84 | 1.85 |
Methods | ADD/SUB | MUL/DIV |
---|---|---|
B-SOR/B-MSOR | ||
B-AOR/B-MAOR | ||
B-TOR/B-MTOR |
Appendix B
References
- Young, D.M. Iterative Methods for Solving Partial Difference Equations of Elliptic Type. Ph.D. Thesis, Harvard University, Cambridge, MA, USA, 1950. [Google Scholar]
- Hadjidimos, A. Accelerated overrelaxation method. Math. Comput. 1978, 32, 149–157. [Google Scholar] [CrossRef]
- Kuang, J.; Ji, J. A survey of AOR and TOR methods. J. Comput. Appl. Math. 1988, 24, 3–12. [Google Scholar] [CrossRef]
- Evans, D.J.; Biggins, M.J. The solution of elliptic partial differential equations by a new block over-relaxation technique. Int. J. Comput. Math. 1982, 10, 269–282. [Google Scholar] [CrossRef]
- Xiang, S.; Zhang, S. A convergence analysis of block accelerated over-relaxation iterative methods for weak block H-matrices to partition π. Linear Algebra Appl. 2006, 418, 20–32. [Google Scholar] [CrossRef]
- Yang, X. Discrete-time accelerated block successive overrelaxation methods for time-dependent Stokes equations. Appl. Math. Comput. 2013, 222, 519–538. [Google Scholar] [CrossRef]
- Liang, Z.Z.; Zhang, G.F. On SSOR iteration method for a class of block two-by-two linear system. Numer. Algor. 2016, 71, 655–671. [Google Scholar] [CrossRef]
- Dai, P.; Wu, Q. An efficient block Gauss-Seidel iteration method for the space fractional coupled nonlinear Schrodinger equations. Appl. Math. Lett. 2021, 117, 107116. [Google Scholar] [CrossRef]
- Ling, W.K.; Dahalan, A.A.; Saudi, A. Autonomous path planning through application of rotated two-parameter overrelaxation 9-point Laplacian iteration technique. Indones. J. Electr. Eng. Comput. Sci. 2021, 22, 1116–1123. [Google Scholar] [CrossRef]
- Mohamad, N.S.; Sulaiman, J.; Saudi, A.; Zainal, N.F.A. Piecewise polynomial in solving Fredholm integral equation of second kind by using successive over relaxation method. Int. J. Eng. Trends Technol. 2023, 71, 165–173. [Google Scholar] [CrossRef]
- Dahalan, A.A.; Saudi, A. An iterative technique for solving path planning in identified environments by using skewed block accelerated algorithm. AIMS Maths. 2023, 8, 5725–5744. [Google Scholar] [CrossRef]
- Connolly, C.I.; Burns, J.B.; Weiss, R. Path planning using Laplace’s equation. In Proceedings of the IEEE International Conference of Robotics Automation, Cincinnati, OH, USA, 13–18 May 1990; pp. 2102–2106. [Google Scholar]
- Akishita, S.; Hisanobu, T.; Kawamura, S. Fast path planning available for moving obstacle avoidance by use of Laplace potential. In Proceedings of the IEEE International Conference of Intelligent Robots System, Yokohama, Japan, 26–30 July 1993; pp. 673–678. [Google Scholar]
- Sasaki, S. A practical computational technique for mobile robot navigation. In Proceedings of the IEEE International Conference of Control Applications, Trieste, Italy, 4 September 1998; pp. 1323–1327. [Google Scholar]
- Barraquand, J.; Langlois, B.; Latombe, J.C. Numerical potential field techniques for robot path planning. IEEE Trans. Syst. Man Cybern. 1992, 22, 224–241. [Google Scholar] [CrossRef]
- Connolly, C.I.; Gruppen, R. On the applications of harmonic functions to robotics. J. Robot. Syst. 1993, 10, 931–946. [Google Scholar] [CrossRef]
- Khatib, O. Real-time obstacle avoidance for manipulators and mobile robots. In Proceedings of the IEEE Transactions on Robotics and Automation, St. Louis, MO, USA, 25–28 March 1985; pp. 500–505. [Google Scholar]
- Anete, V.; Rachid, O.; Robin, T.B.; Ottar, L.O.; Thor, I.F. Path planning and collision avoidance for autonomous surface vehicles l: A review. J. Mar. Sci. Techol. 2021, 26, 1292–1306. [Google Scholar]
- Vallve, J.; Andrade-Cetto, J. Mobile robot exploration with potential information fields. In Proceedings of the European Conference on Mobile Robots, Barcelona, Spain, 25–27 September 2013; pp. 222–227. [Google Scholar]
- Wang, H.; Lyu, W.; Yao, P.; Liang, X.; Liu, C. Three-dimensional path planning for unmanned aerial vehicle based on interfered fluid dynamical system. Chin. J. Aeronaut. 2015, 28, 229–239. [Google Scholar] [CrossRef]
- Zhou, H.; Re, Z.; Marley, M.; Skjetne, R. A guidance and maneuvering control system design with anti-collision using stream functions with vortex flows for autonomous marine vessels. IEEE Trans. Control Syst. Technol. 2022, 30, 2630–2645. [Google Scholar] [CrossRef]
- Dahalan, A.A.; Saudi, A. Self-directed mobile robot path finding in static indoor environment by explicit group modified AOR iteration. Lect. Notes Electr. Eng. 2022, 730, 27–35. [Google Scholar]
- Dahalan, A.A.; Saudi, A. Static indoor pathfinding with explicit group two-parameter over relaxation iterative technique. Lect. Notes Comput. Sci. 2021, 13051, 265–275. [Google Scholar]
- Evans, L.C. Partial Differential Equations, 2nd ed.; American Mathematical Society: Providence, RI, USA, 2010. [Google Scholar]
- Courant, R.; Hilbert, D. Methods of Mathematical Physics: Partial Differential Equations, 2nd ed.; John Wiley and Sons: New York, NY, USA, 1989. [Google Scholar]
- Abdullah, A.R. The four point Explicit Decoupled Group (EDG) method: A fast Poisson solver. Int. J. Comput. Math. 1991, 38, 61–70. [Google Scholar] [CrossRef]
- Ibrahim, A.; Abdullah, A.R. Solving the two dimensional diffusion equation by the four point Explicit Decoupled Group (EDG) iterative method. Int. J. Comput. Math. 1995, 58, 253–263. [Google Scholar] [CrossRef]
- Othman, M.; Abdullah, A.R. An efficient four points Modified Explicit Group Poisson solver. Int. J. Comput. Math. 2000, 76, 203–217. [Google Scholar] [CrossRef]
- William, J.S. Introduction to the Numerical Solution of Markov Chains; Princeton University Press: Princeton, NJ, USA, 2021. [Google Scholar]
- Li, R.; Gong, L.; Xu, M. A heterogeneous parallel Red-Black SOR technique and the numerical study on SIMPLE. J. Supercomput. 2020, 76, 9585–9608. [Google Scholar] [CrossRef]
- Fernandez, G.; Mendina, M.; Usera, G. Heterogeneous computing (CPU-GPU) for pollution dispersion in an urban environment. Computation 2020, 8, 3. [Google Scholar] [CrossRef]
- Github. Available online: https://github.com/azalisaudi/planner (accessed on 9 September 2023).
- Chen, S.F. Collision-free Path Planning. Ph.D. Thesis, Iowa State University, Ames, IA, USA, 1997. [Google Scholar]
- Yufei, L.; Noboru, N. Development of an unmanned surface vehicle for autonomous navigation in a paddy field. Eng. Agric. Environ. Food 2016, 9, 21–26. [Google Scholar]
- Georgii, K.; Seyed, N.T.B.; Vyacheslav, R.; Maksim, K.; Timur, K. Design of small unmanned surface vehicle with autonomous navigation system. Inventions 2021, 6, 91. [Google Scholar]
- Rakhimov, S. New Quarter-Sweep-Based Accelerated Over-Relaxation Iterative Algorithms and their Parallel Implementations in Solving the 2D Poisson Equation. Master’s Thesis, Universiti Putra Malaysia, Serdang, Malaysia, 2010. [Google Scholar]
- Ali, L.H.; Sulaiman, J.; Saudi, A. Iterative method for solving nonlinear Fredholm integral equations using Quarter-Sweep Newton-PKSOR method. Lect. Notes Electr. Eng. 2023, 983, 33–46. [Google Scholar]
- Dahalan, A.A.; Saudi, A.; Sulaiman, J. Pathfinding for mobile robot navigation by exerting the Quarter-Sweep Modified Accelerated Overrelaxation (QSMAOR) iterative approach via the Laplacian operator. Model. Simul. Eng. 2022, 2002, 9388146. [Google Scholar] [CrossRef]
N × N | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Methods | 300 | 600 | 900 | 1200 | 1500 | 1800 | |||||||
k | t | k | t | k | t | k | t | k | t | k | t | ||
Region 1 | B-SOR | 1258 | 6.88 | 5899 | 163.72 | 12,844 | 871.66 | 22,227 | 2694.80 | 34,055 | 6286.69 | 48,446 | 12,675.73 |
B-AOR | 1042 | 6.05 | 4994 | 137.87 | 10,928 | 751.78 | 19,107 | 2442.66 | 29,306 | 5551.02 | 41,775 | 10,459.68 | |
B-TOR | 997 | 5.05 | 4812 | 133.00 | 10,581 | 720.29 | 18,549 | 2394.62 | 28,445 | 5404.33 | 40,524 | 10,316.42 | |
B-MSOR | 1037 | 0.99 | 5550 | 18.08 | 12,141 | 118.11 | 21,038 | 665.15 | 32,287 | 1869.90 | 45,729 | 3722.23 | |
B-MAOR | 872 | 1.02 | 4816 | 19.93 | 10,534 | 173.02 | 18,483 | 488.31 | 35,220 | 1625.68 | 40,872 | 2920.89 | |
B-MTOR | 840 | 0.77 | 4685 | 16.68 | 10,350 | 125.78 | 19,167 | 509.43 | 29,386 | 1364.33 | 42,020 | 2995.83 | |
Region 2 | B-SOR | 1729 | 7.67 | 6782 | 199.59 | 14,874 | 1009.48 | 26,007 | 2827.46 | 39,968 | 6925.80 | 56,858 | 14,336.95 |
B-AOR | 1610 | 8.25 | 6368 | 185.36 | 13,953 | 926.49 | 24,429 | 3003.98 | 32,926 | 5909.85 | 46,923 | 12,802.89 | |
B-TOR | 1489 | 7.64 | 5957 | 169.39 | 13,062 | 867.20 | 22,905 | 2787.69 | 31,552 | 5700.19 | 45,197 | 12,312.08 | |
B-MSOR | 1967 | 1.62 | 7650 | 24.43 | 16,711 | 171.84 | 29,205 | 693.10 | 44,722 | 1892.76 | 53,313 | 3475.98 | |
B-MAOR | 1685 | 1.51 | 6633 | 29.43 | 14,533 | 206.74 | 25,426 | 683.65 | 38,994 | 1772.61 | 43,259 | 3023.93 | |
B-MTOR | 1754 | 1.54 | 6881 | 24.90 | 15,053 | 207.22 | 25,984 | 693.02 | 39,212 | 1776.36 | 38,174 | 2684.38 | |
Region 3 | B-SOR | 2666 | 13.24 | 11,076 | 315.87 | 24,519 | 1602.81 | 42,897 | 5591.93 | 65,977 | 12,331.17 | 100,842 | 26,171.60 |
B-AOR | 2480 | 13.83 | 10,389 | 301.27 | 22,995 | 1633.35 | 40,322 | 5261.60 | 62,423 | 11,975.63 | 89,182 | 23,616.21 | |
B-TOR | 2371 | 11.66 | 9977 | 296.46 | 22,111 | 1883.36 | 38,917 | 5094.93 | 59,912 | 10,921.11 | 85,272 | 22,338.11 | |
B-MSOR | 3737 | 3.82 | 14,440 | 48.48 | 31,601 | 466.80 | 55,234 | 1383.52 | 84,980 | 3759.92 | 121,103 | 8249.25 | |
B-MAOR | 3226 | 3.09 | 12,573 | 61.93 | 27,503 | 364.05 | 48,128 | 1316.80 | 74,066 | 3511.33 | 105,481 | 7665.39 | |
B-MTOR | 3285 | 3.16 | 10,609 | 39.78 | 28,440 | 336.12 | 49,864 | 1618.95 | 76,583 | 3625.43 | 109,151 | 7964.20 | |
Region 4 | B-SOR | 1629 | 7.80 | 6487 | 187.33 | 14,194 | 990.20 | 24,913 | 2979.14 | 38,195 | 6919.25 | 54,508 | 13,843.15 |
B-AOR | 1392 | 7.56 | 5648 | 167.65 | 12,367 | 891.51 | 21,724 | 2609.11 | 33,518 | 6139.29 | 48,120 | 12,833.82 | |
B-TOR | 1328 | 7.10 | 5428 | 163.21 | 11,907 | 850.26 | 20,963 | 2573.12 | 34,842 | 6494.66 | 49,772 | 13,381.51 | |
B-MSOR | 2001 | 1.74 | 7853 | 26.61 | 17,093 | 189.53 | 29,978 | 1043.96 | 45,935 | 1977.74 | 65,583 | 4342.88 | |
B-MAOR | 1709 | 1.57 | 6804 | 30.18 | 14,831 | 192.16 | 26,085 | 708.48 | 39,986 | 1848.86 | 57,191 | 4053.74 | |
B-MTOR | 1783 | 1.68 | 7062 | 27.11 | 15,384 | 205.16 | 27,031 | 745.00 | 41,447 | 1945.97 | 59,223 | 4201.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dahalan, A.A.; Saudi, A.; Sulaiman, J. Enhancing Autonomous Guided Vehicles with Red-Black TOR Iterative Method. Mathematics 2023, 11, 4393. https://doi.org/10.3390/math11204393
Dahalan AA, Saudi A, Sulaiman J. Enhancing Autonomous Guided Vehicles with Red-Black TOR Iterative Method. Mathematics. 2023; 11(20):4393. https://doi.org/10.3390/math11204393
Chicago/Turabian StyleDahalan, A’Qilah Ahmad, Azali Saudi, and Jumat Sulaiman. 2023. "Enhancing Autonomous Guided Vehicles with Red-Black TOR Iterative Method" Mathematics 11, no. 20: 4393. https://doi.org/10.3390/math11204393
APA StyleDahalan, A. A., Saudi, A., & Sulaiman, J. (2023). Enhancing Autonomous Guided Vehicles with Red-Black TOR Iterative Method. Mathematics, 11(20), 4393. https://doi.org/10.3390/math11204393