Boundedness and Compactness of Weighted Composition Operators from α-Bloch Spaces to Bers-Type Spaces on Generalized Hua Domains of the First Kind
Abstract
:1. Introduction
2. Preliminaries
3. Boundedness of
4. Compactness of
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cowen, C.; MacCluer, B. Composition Operators on Spaces of Analytic Functions; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Cartan, E. Sur les domaines bornés homogènes de l’espace de n variables complexes. In Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg; Springer: Berlin/Heidelberg, Germany, 1935; Volume 11, pp. 116–162. [Google Scholar]
- Yin, W. From Cartan Domains to Hua Domains; Capital Normal University Press: Beijing, China, 2003. (In Chinese) [Google Scholar]
- Yin, W.; Su, J. Extremal problem on super-Cartan domain of the first type. Compiez Var. 2003, 48, 441–452. [Google Scholar]
- Wang, M.; Liu, Y. Weighted composition operators between Bers-type spaces. Acta Math. Sci. Ser. A 2007, 27, 665–671. [Google Scholar]
- Xu, N.; Zhou, Z. Difference of weighted composition operators from α-Bloch spaces to β-Bloch spaces. Rocky Mt. J. Math. 2021, 51, 2237–2250. [Google Scholar] [CrossRef]
- Li, S. Weighted composition operators from Hardy space to the Bers-type space. J. Huzhou Norm. Univ. 2004, 1, 8–11. [Google Scholar]
- Zhu, X. Generalized weighted composition operators from Bloch spaces into Bers-type spaces. Filomat 2012, 26, 1163–1169. [Google Scholar] [CrossRef]
- Li, S.; Stević, S. Weighted composition operators from H∞ to the Bloch space on the polydisc. Abstr. Appl. Anal. 2007, 2007, 048478. [Google Scholar] [CrossRef]
- Li, S.; Stević, S. Weighted composition operators from α-Bloch space to H∞ on the polydisc. Numer. Funct. Anal. Optim. 2007, 28, 911–925. [Google Scholar] [CrossRef]
- Li, S.; Stević, S. Weighted composition operators between H∞ and α-Bloch spaces in the unit ball. Taiwan. J. Math. 2008, 12, 1625–1639. [Google Scholar] [CrossRef]
- Li, S.; Wulan, H.; Zhao, R.; Zhu, K. A characterization of Bergman spaces on the unit ball of n. Glas. Math. J. 2009, 51, 315–330. [Google Scholar] [CrossRef]
- Li, H.; Liu, P. Weighted composition operators between H∞ and generally weighted Bloch spaces on polydisks. Int. J. Math. 2010, 21, 687–699. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, H. Weighted composition operators of H∞ into α-Bloch spaces on the unit ball. Acta. Math. Sin. Engl. Ser. 2009, 25, 265–278. [Google Scholar] [CrossRef]
- Zhu, X. Generalized weighted composition operators from H∞ to the logarithmic Bloch space. Filomat 2016, 30, 3867–3874. [Google Scholar] [CrossRef]
- Wu, J.; Xu, X.; Ye, Z. Global smooth solutions to the n-dimensional damped models of incompressible fluid mechanics with small initial datum. J. Nonlinear Sci. 2015, 25, 157–192. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, X. Periodic waves of nonlinear Dirac equations. Nonlinear Anal. 2014, 109, 252–267. [Google Scholar] [CrossRef]
- Tian, Q.; Yang, X.; Zhang, H.; Xu, D. An implicit robust numerical scheme with graded meshes for the modified Burgers model with nonlocal dynamic properties. Comput. Appl. Math. 2023, 42, 246. [Google Scholar] [CrossRef]
- Yang, X.; Wu, L.; Zhang, H. A space-time spectral order sinc-collocation method for the fourth-order nonlocal heat model arising in viscoelasticity. Appl. Math. Comput. 2023, 457, 128192. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, H.; Jiang, X.; Yang, X. A high-order and efficient numerical technique for the nonlocal neutron diffusion equation representing neutron transport in a nuclear reactor. Ann. Nucl. Energy 2024, 195, 110163. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, Z. Weighted composition operators on Bers-type spaces of Loo-Keng Hua domains. Bull. Korean Math. Soc. 2020, 57, 583–595. [Google Scholar]
- Kung, J. Applied Inequalities; Shandong Science and Technology Press: Qingdao, China, 2004. (In Chinese) [Google Scholar]
- Lu, Q. The Classical Manifolds and the Classical Domains; Science Press: Beijing, China, 2011. (In Chinese) [Google Scholar]
- Wu, X. Weighted Composition Operators from u-Bloch Spaces to v-Bloch Spaces on Hartogs Domains; Jiangsu Normal University: Xuzhou, China, 2020. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Su, J. Boundedness and Compactness of Weighted Composition Operators from α-Bloch Spaces to Bers-Type Spaces on Generalized Hua Domains of the First Kind. Mathematics 2023, 11, 4403. https://doi.org/10.3390/math11204403
Wang J, Su J. Boundedness and Compactness of Weighted Composition Operators from α-Bloch Spaces to Bers-Type Spaces on Generalized Hua Domains of the First Kind. Mathematics. 2023; 11(20):4403. https://doi.org/10.3390/math11204403
Chicago/Turabian StyleWang, Jiaqi, and Jianbing Su. 2023. "Boundedness and Compactness of Weighted Composition Operators from α-Bloch Spaces to Bers-Type Spaces on Generalized Hua Domains of the First Kind" Mathematics 11, no. 20: 4403. https://doi.org/10.3390/math11204403
APA StyleWang, J., & Su, J. (2023). Boundedness and Compactness of Weighted Composition Operators from α-Bloch Spaces to Bers-Type Spaces on Generalized Hua Domains of the First Kind. Mathematics, 11(20), 4403. https://doi.org/10.3390/math11204403