A Hybrid Method for All Types of Solutions of the System of Cauchy-Type Singular Integral Equations of the First Kind
Abstract
:1. Introduction
2. Methodology and Reduction Techniques
3. Description of the HPM and Its Application
3.1. Theory of Standard HPM
3.2. Application of the HPM and MHPM to the System of CSIEs
4. Stability Analysis and Convergence
4.1. Stability Analysis of the Solution
4.2. Convergence of the Hybrid Method
5. Numerical Examples
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jakeman, A.J.; Anderssen, R.S. Abel Type Integral Equations in Stereology: I. General Discussion. J. Microsc. 1975, 105, 121–133. [Google Scholar] [CrossRef]
- Healy, S.B.; Haase, J.; Lesne, O. Abel Transform Inversion of Radio Occultation Measurements Made with a Receiver inside the Earth’s Atmosphere. In Proceedings of the Annales Geophysicae; Copernicus Publications: Göttingen, Germany, 2002; Volume 20, pp. 1253–1256. [Google Scholar]
- Bracewell, R.N.; Riddle, A.C. Inversion of Fan-Beam Scans in Radio Astronomy. Astrophys. J. 1967, 150, 427–434. [Google Scholar] [CrossRef]
- Buck, U. Inversion of Molecular Scattering Data. Rev. Mod. Phys. 1974, 42, 369–389. [Google Scholar] [CrossRef]
- Kosarev, E.L. Applications of Integral Equations of the First Kind in Experiment Physics. Comput. Phys. Commun. 1980, 20, 69–75. [Google Scholar] [CrossRef]
- Hellsten, H.; Andersson, L.E. An Inverse Method for the Processing of Synthetic Aperture Radar Data. Inverse Probl. 1987, 3, 111–124. [Google Scholar] [CrossRef]
- Fleurier, C.; Chapelle, J. Inversion of ABEL’s Integral Equation—Application to Plasma Spectroscopy. Comput. Phys. Commun. 1974, 35, 200–206. [Google Scholar] [CrossRef]
- Glantschnig, W.J.; Holliday, A. Mass Fraction Profiling Based on X-Ray Tomography and Its Application to Characterizing Porous Silica Boules. Appl. Opt. 1987, 26, 983–989. [Google Scholar] [CrossRef]
- Erdogan, F. Approximate Solutions of Systems of Singular Integral Equations. SIAM J. Appl. Math. 1969, 17, 1041–1059. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, O.P.; Dixit, S. Homotopy Perturbation Method for Solving System of Generalized Abel’s Integral Equations. Appl. Appl. Math. An Int. J. 2011, 6, 2009–2024. [Google Scholar]
- Wazwaz, A.-M. Nonlinear Volterra Integral Equations. In Linear and Nonlinear Integral Equations; Wazwaz, A.-M., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 387–423. ISBN 978-3-642-21449-3. [Google Scholar]
- Turhan, İ.; Oğuz, H.; Yusufoğlu, E. Chebyshev Polynomial Solution of the System of Cauchy-Type Singular Integral Equations of the First Kind. Int. J. Comput. Math. 2013, 90, 944–954. [Google Scholar] [CrossRef]
- Duru, H.K.; Yusufoğlu, E. Solution of the System of Cauchy-Type Singular Integral Equations of the First Kind by Third- and Fourth-Kind Chebyshev Polynomials. In Proceedings of the International Conference on Numerical Analysis and Applied Mathematics 2014 (ICNAAM-2014), Rodhes, Greece, 22–28 September 2014. [Google Scholar] [CrossRef]
- Ahdiaghdam, S.; Shahmorad, S. Approximate Solution of a System of Singular Integral Equations of the First Kind by Using Chebyshev Polynomials. Iran. J. Numer. Anal. Optim. 2019, 9, 31–47. [Google Scholar] [CrossRef]
- Didgar, M.; Vahidi, A. An Approximate Approach for Systems of Singular Volterra Integral Equations Based on Taylor Expansion. Commun. Theor. Phys. 2018, 70, 145–152. [Google Scholar] [CrossRef]
- Ladopoulos, E.G. Singular Integral Equations; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar] [CrossRef]
- Ioakimidis, N.I. Supplementing the Numerical Solution of Singular/Hypersingular Integral Equations/Inequalities with Parametric Inequality Constraints with Applications to Crack Problems. Comput. Assist. Methods Eng. Sci. 2017, 24, 41–65. [Google Scholar]
- Ioakimidis, N.I.; Anastasselos, G.T. Direct Taylor-Series Solution of Singular Integral Equations with MAPLE. Comput. Struct. 1992, 45, 613–617. [Google Scholar] [CrossRef]
- Eshkuvatov, Z. Homotopy Perturbation Method and Chebyshev Polynomials for Solving a Class of Singular and Hypersingular Integral Equations. Numer. Algebr. Control Optim. 2018, 8, 337–350. [Google Scholar] [CrossRef]
- Eshkuvatov, Z.K.; Zulkarnain, F.S.; Nik Long, N.M.A.; Muminov, Z. Homotopy Perturbation Method for the Hypersingular Integral Equations of the First Kind. Ain Shams Eng. J. 2018, 9, 3359–3363. [Google Scholar] [CrossRef]
- Eshkuvatov, Z.K.; Nik Long, N.M.A.; Abdulkawi, M. Approximate Solution of Singular Integral Equations of the First Kind with Cauchy Kernel. Appl. Math. Lett. 2009, 22, 651–657. [Google Scholar] [CrossRef]
- Muskheleshvili, N.I. Singular integral equations with Cauchy type kernels. In Singular Integral Equations; Chap., 6; Radok, J.R.M., Ed.; Dover Publications: New York, NY, USA, 2008; pp. 123–128. [Google Scholar]
- Lifanov, I.K. Singular Integral Equations and Discrete Vortices; De Gruyter: Berlin, Germany; Boston, MA, USA, 1996; pp. 45–53. ISBN 906764207X. [Google Scholar]
- Aminikhah, H.; Salahi, M. A New HPM for Integral Equations. Appl. Appl. Math. Int. J. 2009, 4, 122–133. [Google Scholar]
- Biazar, J.; Ghazvini, H. Numerical Solution for Special Nonlinear Fredholm Integral Equation by HPM. Appl. Math. Comput. 2008, 195, 681–687. [Google Scholar] [CrossRef]
- Abbasbandy, S. Application of He’s Homotopy Perturbation Method to Functional Integral Equations. Chaos Solitons Fractals 2007, 31, 1243–1247. [Google Scholar] [CrossRef]
- Abbasbandy, S. Numerical Solutions of the Integral Equations: Homotopy Perturbation Method and Adomian’s Decomposition Method. Appl. Math. Comput. 2006, 173, 493–500. [Google Scholar] [CrossRef]
- Abbasbandy, S. The Application of Homotopy Analysis Method to Nonlinear Equations Arising in Heat Transfer. Phys. Lett. A 2006, 360, 109–113. [Google Scholar] [CrossRef]
- Odibat, Z.; Momani, S. Modified Homotopy Perturbation Method: Application to Quadratic Riccati Differential Equation of Fractional Order. Chaos Solitons Fractals 2008, 36, 167–174. [Google Scholar] [CrossRef]
- Siddiqui, A.M.; Mahmood, R.; Ghori, Q.K. Homotopy Perturbation Method for Thin Film Flow of a Third Grade Fluid down an Inclined Plane. Chaos Solitons Fractals 2008, 35, 140–147. [Google Scholar] [CrossRef]
- Cveticanin, L. Homotopy–Perturbation Method for Pure Nonlinear Differential Equation. Chaos Solitons Fractals 2006, 30, 1221–1230. [Google Scholar] [CrossRef]
- Eshkuvatov, Z.K.; Ismail, S.; Mamatova, H.X.; Viscarra, D.S.; Aloev, R.D. Modified HAM for solving linear system of Fredholm-Volterra Integral Equations. Malays. J. Math. Sci. 2022, 16, 87–103. [Google Scholar] [CrossRef]
- Boujemaa, H.; Oulgiht, B.; Ragusa, M.A. A new class of fractional Orlicz-Sobolev space and singular elliptic problems. J. Math. Anal. Appl. 2023, 526, 127342. [Google Scholar] [CrossRef]
- Liu, X.; Bo, Y.; Jin, Y.F. A numerical method for the variable-order time-fractional wave equations based on the H2N2 approximation. J. Funct. Sapces 2022, 2022, 3438289. [Google Scholar] [CrossRef]
- Zhang, W.; Li, R. Strong convergence of the Euler-Maruyama method for the generalized stochastic Volterra integral equations driven by Levy noise. Filomat 2022, 36, 6713–6734. [Google Scholar] [CrossRef]
- Eberly, D. Stability Analysis for Systems of Differential Equations; Geometric Tools, LLC: Redmond, WA, USA, 2008. [Google Scholar]
- Elliott, D. A Convergence Theorem For Singular Integral Equations. Austral. Math. Soc. 1981, 22, 539–552. [Google Scholar] [CrossRef]
- Ayati, Z.; Biazar, J. On the Convergence of Homotopy Perturbation Method. J. Egypt. Math. Soc. 2015, 23, 424–428. [Google Scholar] [CrossRef]
- Eshkuvatov, Z.K.; Ahmedov, A.; Nik Long, N.M.A.; Amalina, N.J. Approximating Cauchy-Type Singular Integral by an Automatic Quadrature Scheme. J. Comput. Appl. Math. 2011, 235, 4675–4686. [Google Scholar] [CrossRef]
- Sharma, V.; Setia, A.; Agarwal, R.P. Numerical Solution for System of Cauchy Type Singular Integral Equations with Its Error Analysis in Complex Plane. Appl. Math. Comput. 2018, 328, 338–352. [Google Scholar] [CrossRef]
t | U1(t) | U2(t) | E1(t) | E2(t) |
---|---|---|---|---|
−0.95 | −2.02828994819777 | 3.25415992566116 | 1.8014833608 × 10−15 | 8.947367359 × 10−14 |
−0.70 | −0.65346403921307 | 0.18981574472379 | 5.8039265767 × 10−16 | 2.882616866 × 10−14 |
−0.30 | −0.20965696734438 | −0.78970791033051 | 1.8621279393 × 10−16 | 9.248568765 × 10−15 |
0.00 | 0.00000000000000 | −1.00000000000000 | 0.0000000000000 | 0.000000000000 |
0.50 | 0.38490017945975 | −0.70565032900954 | 3.418600331 × 10−16 | 1.697904831 × 10−14 |
0.70 | 0.65346403921307 | −0.24582694808491 | 5.803926576 × 10−16 | 2.882616866 × 10−14 |
0.95 | 2.02828994819777 | 1.90196662686264 | 1.801483360 × 10−15 | 8.947367359 × 10−14 |
t | U1(t) | U2(t) | E1(t) | E2(t) |
---|---|---|---|---|
−0.95 | −0.5408773195194 | −1.4233613671563 | 1.3650345104957 × 10−13 | 1.2578778554944 × 10−15 |
−0.70 | −1.2011291387440 | −3.2673201960653 | 3.1217939169280 × 10−13 | 1.9733350361090 × 10−15 |
−0.30 | −1.4893409754315 | −4.4027963142320 | 4.1695251528505 × 10−13 | 2.6069791150908 × 10−16 |
0.00 | −1.4074074074074 | −4.6666666666666 | 4.3701667798948 × 10−13 | 4.1448326252672 × 10−15 |
0.50 | −0.6415002990995 | −4.2339019740572 | 3.7821114999152 × 10−13 | 1.8118581756136 × 10−14 |
0.70 | 0.1057989396821 | −3.7029628888740 | 3.1159899903512 × 10−13 | 3.0915582232374 × 10−14 |
0.95 | 3.5157025768761 | −2.7755546659548 | 1.3470196768869 × 10−13 | 1.0082617926126 × 10−13 |
t | E1(t) | E2(t) | ||
---|---|---|---|---|
−0.95 | 3.6481618306462 × 10−14 | 2.2550146982292 × 10−15 | 1.3650345104957 × 10−13 | 1.2578778554944 × 10−15 |
−0.70 | 8.3428680766814 × 10−14 | 4.8172590587367 × 10−15 | 3.1217939169280 × 10−13 | 1.9733350361090 × 10−15 |
−0.30 | 1.1141697686596 × 10−13 | 5.3443071859360 × 10−15 | 4.1695251528505 × 10−13 | 2.6069791150908 × 10−16 |
0.00 | 1.1676256669354 × 10−13 | 4.1448326252672 × 10−15 | 4.3701667798948 × 10−13 | 4.1448326252672 × 10−15 |
0.50 | 1.0099115145525 × 10−13 | 1.8802301822417 × 10−15 | 3.7821114999152 × 10−13 | 1.8118581756136 × 10−14 |
0.70 | 8.3138484437974 × 10−14 | 7.5644509717512 × 10−15 | 3.1159899903512 × 10−13 | 3.0915582232374 × 10−14 |
0.95 | 3.5580876626020 × 10−14 | 3.6176630333961 × 10−14 | 1.3470196768869 × 10−13 | 1.0082617926126 × 10−13 |
t | U1(t) | U2(t) | E1(t) | E2(t) |
---|---|---|---|---|
−0.95 | −4.34836897666258 | 0.2775554665954 | 2.3368952774 × 10−13 | 1.8593678657 × 10−13 |
−0.70 | −2.01017985396020 | −2.01017985396ther02 | 5.4151602282 × 10−13 | 5.4078776822× 10−14 |
−0.30 | −1.47381082970237 | −3.08894598554058 | 7.24423287407 × 10−13 | 1.5573596666 × 10−14 |
0.00 | −1.25925925925925 | −3.33333333333333 | 7.59655712819 × 10−13 | 2.9605947323 × 10−15 |
0.50 | −0.89810041873941 | −2.95090137585808 | 6.580520754485 × 10−13 | 6.4383639573 × 10−15 |
0.70 | −0.70325177553406 | −2.44582254676892 | 5.426768081409 × 10−13 | 7.0559164526 × 10−15 |
0.95 | −0.29178908026704 | −1.07463783220302 | 2.372924944696 × 10−13 | 3.8194607747 × 10−15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mamatova, H.X.; Eshkuvatov, Z.K.; Ismail, S. A Hybrid Method for All Types of Solutions of the System of Cauchy-Type Singular Integral Equations of the First Kind. Mathematics 2023, 11, 4404. https://doi.org/10.3390/math11204404
Mamatova HX, Eshkuvatov ZK, Ismail S. A Hybrid Method for All Types of Solutions of the System of Cauchy-Type Singular Integral Equations of the First Kind. Mathematics. 2023; 11(20):4404. https://doi.org/10.3390/math11204404
Chicago/Turabian StyleMamatova, H. X., Z. K. Eshkuvatov, and Sh. Ismail. 2023. "A Hybrid Method for All Types of Solutions of the System of Cauchy-Type Singular Integral Equations of the First Kind" Mathematics 11, no. 20: 4404. https://doi.org/10.3390/math11204404
APA StyleMamatova, H. X., Eshkuvatov, Z. K., & Ismail, S. (2023). A Hybrid Method for All Types of Solutions of the System of Cauchy-Type Singular Integral Equations of the First Kind. Mathematics, 11(20), 4404. https://doi.org/10.3390/math11204404