The Metrization Problem in [0,1]-Topology
Abstract
:1. Introduction
- (A1)
- If , then ;
- (A2)
- ;
- (B1)
- ;
- (A3)
- , s.t. s.t. .
- (A4)
- If , then ,
- (B2)
- .
- (B3)
- .
- (B4)
- .
2. Preliminaries
- (D1)
- If , then ;
- (D2)
- ;
- (D3)
- ;
- (D4)
- .
- (D5)
- If , then
- (a)
- , ;
- (b)
- If , then .
- (1)
- ;
- (2)
- .
3. The Relationships between Four Kinds of Fuzzy Metrics on
4. The Product of Countable Metric Spaces
- (1)
- For each , ;
- (2)
- The mapping p is a Deng pseudo-metric on ;
- (3)
- The space is the product space of .
5. -Locally Finite Property
- (1)
- Either or is true, depending on whether U follows or precedes V in the ordering;
- (2)
- In either case,
- (1)
- is an open set;
- (2)
- .
- (1)
- If there is a fixed number such that for each , then ;
- (2)
- If such a fixed number is non-existent, then ;
- (3)
- If , then there at most exists a such that .
6. Two Interrelated Mappings
7. Metrization Theorem
- (a)
- .
- (b)
- Each member in is the union of some members in .
8. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Bing, R.H. Metrization of topological spaces. Can. J. Math. 1951, 3, 175–186. [Google Scholar] [CrossRef]
- Dowker, C.H. An embedding theorem for paracompact metric spaces. Duke Math. J. 1947, 14, 639–645. [Google Scholar] [CrossRef]
- Nagata, J. On a necessary and sufficient condition of metrizability. J. Inst. Polytech. 1950, 1, 93–100. [Google Scholar]
- Stone, A.H. Paracompactness and product spaces. Bull. Am. Math. Soc. 1948, 54, 977–982. [Google Scholar] [CrossRef]
- Chang, C.L. Fuzzy topological spaces. J. Math. Anal. Appl. 1968, 24, 182–190. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inform. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Goguen, J.A. The fuzzy Tychonoff Theorem. J. Math. Anal. Appl. 1973, 18, 734–742. [Google Scholar] [CrossRef]
- Chen, P.; Meng, B.; Ba, X. L-Quasi (Pseudo)-Metric in L-Fuzzy Set Theory. Mathematics 2023, 11, 3152. [Google Scholar] [CrossRef]
- Chen, P. Metrics in L-Fuzzy Topology; Published by Science Press: Beijing, China, 2017; Volume 12. (In Chinese) [Google Scholar]
- Chen, P.; Duan, P. Research of Deng metric and its related problems. Fuzzy Syst. Math. 2015, 29, 28–35. (In Chinese) [Google Scholar]
- Chen, P.; Duan, P. Research on a kind of pointwise parametric in L lattices. Fuzzy Syst. Math. 2016, 30, 23–30. (In Chinese) [Google Scholar]
- Chen, P.; Shi, F.G. Further simplification of Erceg metric and its properties. Adv. Math. 2007, 36, 586–592. (In Chinese) [Google Scholar]
- Deng, Z.K. Fuzzy pseudo-metric spaces. J. Math. Anal. Appl. 1982, 86, 74–95. [Google Scholar] [CrossRef]
- Deng, Z.K. M-uniformization and metrization of fuzzy topological spaces. J. Math. Anal. Appl. 1985, 112, 471–486. [Google Scholar] [CrossRef]
- Erceg, M.A. Metric spaces in fuzzy set theory. J. Math. Anal. Appl. 1979, 69, 205–230. [Google Scholar] [CrossRef]
- George, A.; Veeramani, P. On some results in fuzzy metric spaces. Fuzzy Sets Syst. 1994, 64, 395–399. [Google Scholar] [CrossRef]
- Gregori, V.; Morillas, S.; Sapena, A. Examples of fuzzy metrics and applications. Fuzzy Sets Syst. 2011, 170, 95–111. [Google Scholar] [CrossRef]
- Gregori, V.; Sapena, A. On fixed point theorems in fuzzy metric spaces. Fuzzy Sets Syst. 2002, 125, 245–252. [Google Scholar] [CrossRef]
- Diamond, P.; Kloeden, P. Metric spaces of fuzzy sets. Fuzzy Sets Syst. 1990, 35, 241–249. [Google Scholar] [CrossRef]
- Smirnov, Y.M. A necessary and sufficient condition for metrizability of a topological space. Dokl. Akad. Nauk 1951, 77, 197–200. [Google Scholar]
- Hutton, B. Uniformities on fuzzy topological spaces. J. Math. Anal. Appl. 1977, 58, 559–571. [Google Scholar] [CrossRef]
- Kim, D.S.; Kim, Y.K. Some properties of a new metric on the space of fuzzy numbers. Fuzzy Sets Syst. 2004, 145, 395–410. [Google Scholar] [CrossRef]
- Liang, J.H. A few problems in fuzzy metric spaces. Ann. Math. 1984, 6A, 59–67. (In Chinese) [Google Scholar]
- Liang, J.H. Pointwise characterizations of fuzzy metrics and its applications. Acta Math. Sin. 1987, 30, 733–741. (In Chinese) [Google Scholar]
- Luo, M.K. A note on fuzzy paracompact and fuzzy metric. J. Sichuan Univ. 1985, 4, 141–150. (In Chinese) [Google Scholar]
- Meng, B.; Chen, P.; Ba, X. Expansion Theory of Deng’s Metric in [0,1]-Topology. Mathematics 2023, 11, 3414. [Google Scholar] [CrossRef]
- Morillas, S.; Gregori, V.; Peris-Fajarnés, G. A fast impulsive noise color image filter using fuzzy metrics. Real Time Imaging 2005, 11, 417–428. [Google Scholar] [CrossRef]
- Shi, F.G. Pointwise pseudo-metrics in L-fuzzy set theory. Fuzzy Sets Syst. 2001, 121, 209–216. [Google Scholar] [CrossRef]
- Šostak, A.P. Basic structures of fuzzy topology. J. Math. Sci. 1996, 78, 662–701. [Google Scholar] [CrossRef]
- Yang, L.C. Theory of p.q. metrics on completely distributive lattices. Chin. Sci. Bull. 1988, 33, 247–250. (In Chinese) [Google Scholar]
- Yue, Y.; Shi, F.G. On fuzzy pseudo-metric spaces. Fuzzy Sets Syst. 2010, 161, 1105–1116. [Google Scholar] [CrossRef]
- Eklund, P.; Gäbler, W. Basic notions for topology I/II. Fuzzy Sets Syst. 1988, 26–27, 333–356/171–195. [Google Scholar]
- Kramosil, I.; Michalek, J. Fuzzy metric statistical metric spaces. Kybernetica 1975, 11, 336–344. [Google Scholar]
- Morsi, N.N. On fuzzy pseudo-normed vector spaces. Fuzzy Sets Syst. 1988, 27, 351–372. [Google Scholar] [CrossRef]
- Adibi, H.; Cho, Y.; O’regan, D.; Saadati, R. Common fixed point theorems in L-fuzzy metric spaces. Appl. Math. Comput. 2006, 182, 820–828. [Google Scholar] [CrossRef]
- Al-Mayahi, N.F.; Ibrahim, L.S. Some properties of two-fuzzy metric spaces. Gen. Math. Notes 2013, 17, 41–52. [Google Scholar]
- Çayh, G.D. On the structure of uninorms on bounded lattices. Fuzzy Sets Syst. 2019, 357, 2–26. [Google Scholar]
- George, A.; Veeramani, P. On some results of analysis for fuzzy metric spaces. Fuzzy Sets Syst. 1997, 90, 365–368. [Google Scholar] [CrossRef]
- Gregori, V.; Romaguera, S. Some properties of fuzzy metric spaces. Fuzzy Sets Syst. 2000, 115, 485–489. [Google Scholar] [CrossRef]
- Hua, X.J.; Ji, W. Uninorms on bounded lattices constructed by t-norms and t-subconorms. Fuzzy Sets Syst. 2022, 427, 109–131. [Google Scholar] [CrossRef]
- Grabiec, M. Fixed points in fuzzy metric spaces. Fuzzy Sets Syst. 1988, 27, 385–389. [Google Scholar] [CrossRef]
- Morillas, S.; Gregori, V.; Peris-Fajarnés, G.; Sapena, A. New adaptive vector filter using fuzzy metrics. J. Electron. Imaging 2007, 16, 033007. [Google Scholar] [CrossRef]
- Sharma, S. Common fixed point theorems in fuzzy metric spaces. Fuzzy Sets Syst. 2002, 127, 345–352. [Google Scholar] [CrossRef]
- Shi, F.G. (L,M)-fuzzy metric spaces. Indian J. Math. 2010, 52, 231–250. [Google Scholar]
- Shi, F.G. L-metric on the space of L-fuzzy numbers. Fuzzy Sets Syst. 2020, 399, 95–109. [Google Scholar] [CrossRef]
- Yager, R.R. Defending against strategic manipulation in uninorm-based multi-agent decision making. Fuzzy Sets Syst. 2003, 140, 331–339. [Google Scholar] [CrossRef]
- Peng, Y.W. Simplification of Erceg fuzzy metric function and its application. Fuzzy Sets Syst. 1993, 54, 181–189. [Google Scholar]
- Chen, P.; Shi, F.G. A note on Erceg pseudo-metric and pointwise pseudo-metric. J. Math. Res. Exp. 2008, 28, 339–443. [Google Scholar]
- Gierz, G.; Hofmann, K.H.; Keimel, K.; Lawson, J.D.; Mislove, M.; Scott, D.S. A Compendium of Continuous Lattices; Springer: Berlin/Heidelberg, Germany, 1980. [Google Scholar]
- Wang, G.J. Theory of L-Fuzzy Topological Spaces; Shaanxi Normal University Press: Xi’an, China, 2008. (In Chinese) [Google Scholar]
- Shi, F.G. Pointwise quasi-uniformities and p.q. metrics on completely distributive lattices. Acta Math. Sin. 1996, 39, 701–706. (In Chinese) [Google Scholar]
- Shi, F.G.; Zheng, C.Y. Metrization theorems on L-topological spaces. Fuzzy Sets Syst. 2005, 149, 455–471. [Google Scholar] [CrossRef]
- Lan, Y.Y.; Long, F. The sufficiency and necessity conditions for metrization of the fuzzy topological spaces. J. Hunan City Univ. 2006, 15, 37–39. (In Chinese) [Google Scholar]
- Chen, P.; Qiu, X. Expansion theorem of Deng metric. Fuzzy Syst. Math. 2019, 33, 54–65. (In Chinese) [Google Scholar]
- Pu, P.M.; Liu, Y.M. Fuzzy topology I. neighborhood structure of a fuzzy point and Moore-Smith convergence. J. Math. Anal. Appl. 1980, 76, 571–599. [Google Scholar]
- Kelley, J.L. General Topology, 1955 ed.; Van Nostrand: New York, NY, USA, 1955. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, P. The Metrization Problem in [0,1]-Topology. Mathematics 2023, 11, 4430. https://doi.org/10.3390/math11214430
Chen P. The Metrization Problem in [0,1]-Topology. Mathematics. 2023; 11(21):4430. https://doi.org/10.3390/math11214430
Chicago/Turabian StyleChen, Peng. 2023. "The Metrization Problem in [0,1]-Topology" Mathematics 11, no. 21: 4430. https://doi.org/10.3390/math11214430
APA StyleChen, P. (2023). The Metrization Problem in [0,1]-Topology. Mathematics, 11(21), 4430. https://doi.org/10.3390/math11214430