From Transience to Recurrence for Cox–Ingersoll–Ross Model When b < 0
Abstract
:1. Introduction
2. Auxiliary Results
2.1. Moment-Generating Functions
2.2. Moment-Generating Function for CIR Model
- (i)
- The function
- (ii)
- For and ,
3. Recurrence of the CIR Model When b < 0
3.1. Recurrence
3.2. Positive Recurrence
4. Transience of the CIR Model When b < 0
Last Passage Time
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Cox, J.C.; Ingersoll, J.E., Jr.; Ross, S.A. An intertemporal general equilibrium model of asset prices. Econom. J. Econom. Soc. 1985, 53, 363–384. [Google Scholar] [CrossRef]
- Vasicek, O. An equilibrium characterization of the term structure. J. Financ. Econ. 1977, 5, 177–188. [Google Scholar] [CrossRef]
- Heston, S.L. A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud. 1993, 6, 327–343. [Google Scholar] [CrossRef]
- Pitman, J.; Yor, M. A decomposition of Bessel bridges. Z. Flzr Wahrscheinlichkeitstheorie Verwandte Geb. 1982, 59, 425–457. [Google Scholar] [CrossRef]
- Duffie, D.; Filipović, D.; Schachermayer, W. Affine processes and applications in finance. Ann. Appl. Probab. 2003, 13, 984–1053. [Google Scholar] [CrossRef]
- Keller-Ressel, M.; Schachermayer, W.; Teichmann, J. Affine processes are regular. Probab. Theory Relat. Fields 2011, 151, 591–611. [Google Scholar] [CrossRef]
- Burdzy, K.; Chen, Z.Q.; Sylvester, J. The heat equation and reflected Brownian motion in time-dependent domains: II. Singularities of solutions. J. Funct. Anal. 2003, 204, 1–34. [Google Scholar] [CrossRef]
- Burdzy, K.; Chen, Z.Q.; Sylvester, J. The heat equation and reflected Brownian motion in time-dependent domains. Ann. Probab. 2004, 32, 775–804. [Google Scholar] [CrossRef]
- Dembo, A.; Huang, R.; Sidoravicius, V. Walking within growing domains: Recurrence versus transience. Elctronic J. Probab. 2014, 19, 1–20. [Google Scholar] [CrossRef]
- Pinsky, R.G. Transience/recurrence and growth rates for diffusion processes in time-dependent regions. Electron. J. Probab. 2016, 21, 46. [Google Scholar] [CrossRef]
- Engländer, J.; Volkov, S. Conservative random walk. Electron. J. Probab. 2020, 27, 1–29. [Google Scholar] [CrossRef]
- Hoffman, C.; Johnson, T.; Junge, M. From transience to recurrence with poisson tree frogs. Mathematics 2016, 26, 1620–1635. [Google Scholar] [CrossRef]
- Pinsky, R.G. Recurrence, transience and bounded harmonic functions for diffusions in the plane. Ann. Probab. 1987, 15, 954–984. [Google Scholar] [CrossRef]
- Pinsky, R.; Scheutzow, M. Some remarks and examples concerning the transience and recurrence of random diffusions. Ann. Lihp Probab. Stat. 1992, 28, 519–536. [Google Scholar]
- Coculescu, D.; Nikeghbali, A. Hazard Process. Martingales Hazard Process. Math. Financ. 2012, 22, 519–537. [Google Scholar] [CrossRef]
- Elliott, R.J.; Jeanblanc, M.; Yor, M. On models of default risk. Math. Finance 2020, 10, 179–196. [Google Scholar] [CrossRef]
- Pinsky, R.G. Positive Harmonic Functions and Diffusion; Cambridge University Press: Cambridge, UK, 1995; Volume 45. [Google Scholar]
- Durrett, R. Probability: Theory and Examples; Cambridge University Press: Cambridge, UK, 2019; Volume 49. [Google Scholar]
- Ross, S.M. Introduction to Probability Models; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Rogers, L.C.; Williams, D. Diffusions, Markov Processes, and Martingales: Volume 1, Foundations; Cambridge University Press: Cambridge, UK, 2000; Volume 1. [Google Scholar]
- Rogers, L.C.; Williams, D. Diffusions, Markov Processes and Martingales: Volume 2, Itô Calculus; Cambridge University Press: Cambridge, UK, 2000; Volume 2. [Google Scholar]
- Jeanblanc, M.; Yor, M.; Chesney, M. Mathematical Methods for Financial Markets; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Zong, G. From Transience to Recurrence for Cox–Ingersoll–Ross Model When b < 0. Mathematics 2023, 11, 4485. https://doi.org/10.3390/math11214485
Zhang M, Zong G. From Transience to Recurrence for Cox–Ingersoll–Ross Model When b < 0. Mathematics. 2023; 11(21):4485. https://doi.org/10.3390/math11214485
Chicago/Turabian StyleZhang, Mingli, and Gaofeng Zong. 2023. "From Transience to Recurrence for Cox–Ingersoll–Ross Model When b < 0" Mathematics 11, no. 21: 4485. https://doi.org/10.3390/math11214485
APA StyleZhang, M., & Zong, G. (2023). From Transience to Recurrence for Cox–Ingersoll–Ross Model When b < 0. Mathematics, 11(21), 4485. https://doi.org/10.3390/math11214485