Robust and Sparse Portfolio: Optimization Models and Algorithms
Abstract
:1. Introduction
2. Notations and Preliminary
- When , , , , are linearly independent.
- When , , , , are linearly independent.
3. Model and Optimization Theory
3.1. Robust and Sparse Portfolio Model
3.2. Optimization Theory
4. The Uncertainty Set U
4.1. The Quadratic Uncertainty Set
4.2. The Absolute Uncertainty Set
5. Optimization
5.1. Alternating Direction Methods
Algorithm 1 ADM: Alternating Direction Method. |
|
5.2. The Optimization for the Partial Problem (8)
Algorithm 2 PPGM: Penalty Projection Gradient Method. |
|
5.3. Penalty Alternating Direction Method
Algorithm 3 PADM: Penalty Alternating Direction Method. |
|
6. Numerical Results
6.1. Models of Comparison, Data, and Performance Measures
6.2. Robust and Sparse Portfolio
6.3. Out-of-Sample Performance
6.4. Cumulative Return
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Markowitz, H. Portfolio selection. J. Financ. 1952, 7, 142–149. [Google Scholar]
- Brodie, J.; Daubechies, I.; De Mol, C.; Giannone, D.; Loris, I. Sparse and stable markowitz portfolios. Proc. Natl. Acad. Sci. USA 2009, 106, 12267–12272. [Google Scholar] [CrossRef] [PubMed]
- Ledoit, O.; Wolf, M. Improved estimation of the covariance matrix of stock returns with an application to portfolio selection. J. Empir. Financ. 2003, 10, 603–621. [Google Scholar] [CrossRef]
- Ledoit, O.; Wolf, M. Nonlinear shrinkage of the covariance matrix for portfolio selection: Markowitz meets goldilocks. Rev. Financ. Stud. 2017, 30, 4349–4388. [Google Scholar] [CrossRef]
- Jagannathan, R.; Ma, T. Risk reduction in large portfolios: Why imposing the wrong constraints helps. J. Financ. 2003, 58, 1651–1683. [Google Scholar] [CrossRef]
- DeMiguel, V.; Garlappi, L.; Nogales, F.J.; Uppal, R. A generalized approach to portfolio optimization: Improving performance by constraining portfolio norms. Manag. Sci. 2009, 55, 798C812. [Google Scholar] [CrossRef]
- Ben-Tal, A.; Nemirovski, A.; Roos, C. Robust solutions of uncertain quadratic and conic-quadratic problems. SIAM J. Optim. 2002, 13, 535–560. [Google Scholar] [CrossRef]
- El Ghaoui, L.; Oustry, F.; Lebret, H. Robust solutions to uncertain semidefinite programs. SIAM J. Optim. 1998, 9, 33–52. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, M.J.; Kim, J.H.; Jang, J.R.; Chang, K.W. Sparse and robust portfolio selection via semi-definite relaxation. J. Oper. Res. 2020, 71, 687–699. [Google Scholar] [CrossRef]
- Swain, P.; Ojha, A.K. Robust approach for uncertain portfolio allocation problems under box uncertainty. In Recent Trends in Applied Mathematics: Select Proceedings of AMSE; Springer: Singapore, 2019; pp. 347–356. [Google Scholar]
- Goldfarb, D.; Iyengar, G. Robust portfolio selection problems. Math. Oper. Res. 2003, 28, 1–38. [Google Scholar] [CrossRef]
- Lobo, M.S.; Boyd, S. The Worst-Case Risk of a Portfolio. Unpublished Manuscript. Available online: http://faculty.fuqua.duke.edu/(2000)%7Emlobo/bio/researchfiles/rsk-bnd.pdf (accessed on 13 July 2022).
- Min, L.; Dong, J.; Liu, J.; Gong, X. Robust mean-risk portfolio optimization using machine learning-based trade-off parameter. Appl. Soft Comput. 2021, 113, 107948. [Google Scholar] [CrossRef]
- Won, J.H.; Kim, S.J. Robust trade-off portfolio selection. Optim. Eng. 2020, 21, 867–904. [Google Scholar] [CrossRef]
- Fabozzi, F.J.; Huang, D.; Zhou, G. Robust portfolios: Contributions from operations research and finance. Ann. Oper. Res. 2010, 176, 191–220. [Google Scholar] [CrossRef]
- Scutella, M.G.; Recchia, R. Robust portfolio asset allocation and risk measures. Ann. Oper. Res. 2013, 204, 145–169. [Google Scholar] [CrossRef]
- Xidonas, P.; Steuer, R.; Hassapis, C. Robust portfolio optimization: A categorized bibliographic review. Ann. Oper. Res. 2020, 292, 533–552. [Google Scholar] [CrossRef]
- Ghahtarani, A.; Saif, A.; Ghasemi, A. Robust portfolio selection problems: A comprehensive review. Oper. Res. 2022, 22, 3203–3264. [Google Scholar] [CrossRef]
- Leyffer, S.; Menickelly, M.; Munson, T.; Vanaret, C.; Wild, S.M. A survey of nonlinear robust optimization. INFOR: Inf. Syst. Oper. Res. 2020, 58, 342–373. [Google Scholar] [CrossRef]
- Zhao, Z.; Xu, F.; Du, D.; Meihua, W. Robust portfolio rebalancing with cardinality and diversification constraints. Quant. Financ. 2021, 21, 1707–1721. [Google Scholar] [CrossRef]
- Tütüncü, R.H.; Koenig, M. Robust asset allocation. Ann. Oper. Res. 2004, 132, 157–187. [Google Scholar] [CrossRef]
- Khodamoradi, T.; Salahi, M.; Najafi, A.R. Robust CCMV model with short selling and risk-neutral interest rate. Phys. A Stat. Mech. Its Appl. 2020, 547, 124429. [Google Scholar] [CrossRef]
- Fabozzi, F.J.; Kolm, P.N.; Pachamanova, D.A.; Focardi, S.M. Robust portfolio optimization. J. Portf. Manag. 2007, 33, 40. [Google Scholar] [CrossRef]
- Pınar, M.Ç. On robust mean-variance portfolios. Optimization 2016, 65, 1039–1048. [Google Scholar] [CrossRef]
- Busse, J.A.; Chordia, T.; Jiang, L.; Tang, Y. Transaction costs, portfolio characteristics, and mutual fund performance. Manag. Sci. 2021, 67, 1227–1248. [Google Scholar] [CrossRef]
- Hautsch, N.; Voigt, S. Large-scale portfolio allocation under transaction costs and model uncertainty. J. Econom. 2019, 212, 221–240. [Google Scholar] [CrossRef]
- Yu, J.R.; Chiou, W.J.P.; Lee, W.Y.; Lin, S.J. Portfolio models with return forecasting and transaction costs. Int. Rev. Econ. Financ. 2020, 66, 118–130. [Google Scholar] [CrossRef]
- Mordukhovich, B.S.; Nguyen, M.M. An Easy Path to Convex Analysis and Applications; Morgan and Claypool Publishers Series: San Rafael, CA, USA, 2014. [Google Scholar]
- Pan, L.; Xiu, N.; Fan, J. Optimality conditions for sparsity nonlinear programming. Sci. China Math. 2017, 60, 759–776. [Google Scholar] [CrossRef]
- Rockafellar, R.T.; Wets, R.J. Variational Analysis; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Bertsimas, D.; Dunn, J. Machine Learning under a Modern Optimization Lens; Dynamic Ideas LLC: Charlestown, MA, USA, 2019. [Google Scholar]
- Beck, A. First-Order Methods in Optimization; Society for Industrial and Applied Mathematics and Mathematical Optimization Society: Philadelphia, PA, USA, 2017. [Google Scholar]
- Costa, C.M.; Kreber, D.; Schmidta, M. An alternating method for cardinality-constrained optimization: A computational study for the best subset selection and sparse portfolio problems. Informs J. Comput. 2022, 34, 2968–2988. [Google Scholar] [CrossRef]
- Heckel, T.; de Carvahlo, R.; Lu, X.; Perchet, R. Insights into robust optimization: Decomposing into mean-variance and risk-based portfolios. J. Invest. Strateg. 2016, 6, 1–24. [Google Scholar] [CrossRef]
- Yin, C.; Perchet, R.; Soupé, F. A practical guide to robust portfolio optimization. Quant. Financ. 2021, 21, 911–928. [Google Scholar] [CrossRef]
- Geissler, B.; Morsi, A.; Schewe, L.; Schmidt, M. Penalty alternating direction methods for mixed-integer optimization: A new view on feasibility pumps. SIAM J. Optim. 2017, 27, 1611–1636. [Google Scholar] [CrossRef]
- Zhao, H.; Kong, L.; Qi, H.D. Optimal portfolio selections via ℓ12-norm regularization. Comput. Optim. Appl. 2021, 80, 853–881. [Google Scholar] [CrossRef]
- Yen, Y.M.; Yen, T.J. Solving norm constrained portfolio optimization via coordinate-wise descent algorithms. Comput. Stat. Data Anal. 2014, 76, 737–759. [Google Scholar] [CrossRef]
- Behr, P.; Guettler, A.; Miebs, F. On portfolio optimization: Imposing the right constraints. J. Bank. Financ. 2013, 37, 1232–1242. [Google Scholar] [CrossRef]
- DeMiguel, V.; Garlappi, L.; Uppal, R. Optimal versus naive diversification: How in-efficient is the 1/n portfolio strategy? Rev. Financ. Stud. 2009, 22, 1915–1953. [Google Scholar] [CrossRef]
- Ledoit, O.; Wolf, M. A well-conditioned estimator for large-dimensional covariance matrices. J. Multivar. Anal. 2004, 88, 365–411. [Google Scholar] [CrossRef]
- Lai, Z.R.; Yang, P.Y.; Fang, L.; Wu, X. Short-term sparse portfolio optimization based on alternating direction method of multipliers. J. Mach. Learn. Res. 2018, 19, 2547–2574. [Google Scholar]
- Chou, R.K.; Chung, H. Decimalization, trading costs, and information transmission between etfs and index futures. J. Futur. Mark. 2006, 26, 131–151. [Google Scholar] [CrossRef]
- Kan, R.; Wang, X.; Zhou, G. Optimal portfolio choice with estimation risk: No risk-free asset case. Manag. Sci. 2022, 68, 2047–2068. [Google Scholar] [CrossRef]
- Mutunge, P.; Haugl, D. Minimizing the tracking error of cardinality constrained portfolios. Comput. Oper. Res. 2018, 90, 33–41. [Google Scholar] [CrossRef]
- Fan, J.; Zhang, J.; Yu, K. Vast portfolio selection with gross-exposure constraints. J. Am. Stat. Assoc. 2012, 107, 592–606. [Google Scholar] [CrossRef]
- Teng, Y.; Yang, L.; Yu, B.; Song, X. A penalty PALM method for sparse portfolio selection problems. Optim. Methods Softw. 2017, 32, 126–147. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, S.; Yu, Y.; Cai, Z.; Wang, Z. A gravitational search algorithm with hierarchy and distributed framework. Knowl.-Based Syst. 2021, 218, 106877. [Google Scholar] [CrossRef]
- Shen, W.; Wang, J.; Ma, S. Doubly regularized portfolio with risk minimization. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, Québec City, QC, Canada, 27–31 July 2014. [Google Scholar]
Group | Model | Abbr. | Refer. |
---|---|---|---|
(1) | Robust and sparse portfolios with | ||
quadratic uncertainty set | RSQ | this paper | |
absolute uncertainty set | RSA | this paper | |
(2) | Some well-studied portfolio strategies with | ||
regularization | L1 | Brodie et al. [2] | |
regularization | L12 | Zhao et al. [37] | |
Elastic Net regularization | EN | Yen and Yen [38] | |
upper and lower bound | Box | Behr et al. [39] | |
(3) | Benchmarks’ portfolio strategies with | ||
short-sales constrained | SC | Jagannathan and Ma [5] | |
short-sales unconstrained | SU | Jagannathan and Ma [5] | |
equally weighted (1/N) portfolio | EW | DeMiguel et al. [40] | |
(4) | Shrinkage of covariance | ||
sample covariance and identity matrix | SCID | Olivier and Wolf [41] | |
sample covariance and 1-factor matrix | SC1F | Olivier and Wolf [3] |
# | Data Sets | Stocks | Time Period | Source | Frequency |
---|---|---|---|---|---|
1 | DJIA | 29 | 01/10/2017–30/10/2022 | Yahoo finance | Weekly |
2 | NASDAQ | 95 | 01/10/2017–30/10/2022 | Yahoo finance | Weekly |
3 | SP500 | 336 | 01/10/2017–30/10/2022 | Yahoo finance | Weekly |
4 | Russell2000 | 1340 | 01/10/2017–30/10/2022 | Yahoo finance | Weekly |
5 | Russell3000 | 2166 | 01/10/2017–30/10/2022 | Yahoo finance | Weekly |
6 | SP100 | 71 | 01/10/2017–30/10/2022 | Yahoo finance | Weekly |
7 | FF100 | 100 | 11/1999–06/2022 | K.French | Monthly |
DJIA | NASDAQ | SP500 | Russell2000 | Russell3000 | FF100 | ||
---|---|---|---|---|---|---|---|
n = 29 | n = 95 | n = 336 | n = 1340 | n = 2166 | n = 100 | ||
var | 5.3741 | 5.9065 | 11.5604 | 12.1813 | 12.7837 | 17.2215 | |
RSA | SR | 0.0703 | 0.1807 | 0.1008 | 0.0063 | 0.0267 | 0.3215 |
TURN | 0.1194 | 0.1721 | 0.1430 | 0.1033 | 0.1021 | 0.1698 | |
ASP | −1.11e-18 | 2.22e-18 | 0 | −3.08e-18 | −4.01e-18 | −6.28e-18 | |
var | 5.3949 | 5.8633 | 12.5936 | 12.7041 | 12.7702 | 17.2097 | |
RSQ | SR | 0.0737 | 0.1889 | 0.0863 | 0.0059 | 0.0258 | 0.3216 |
TURN | 0.1063 | 0.1711 | 0.1334 | 0.1112 | 0.1003 | 0.1698 | |
ASP | −6.66e-18 | −3.33e-18 | −1.43e-17 | −9.25e-18 | −9.25e-18 | 0 | |
var | 9.5931 | 7.1442 | 32.1907 | 14.8927 | 13.7879 | 18.3918 | |
L12 | SR | 0.0860 | 0.1768 | 0.1000 | 0.0072 | 0.0295 | 0.2971 |
TURN | 0.0220 | 0.0286 | 0.0369 | 0.0675 | 0.0605 | 0.0296 | |
ASP | −0.0216 | −0.0209 | −0.0240 | −0.0057 | −0.0050 | −0.0276 | |
var | 8.0373 | 6.7078 | 13.1228 | 14.2679 | 13.0166 | 16.4937 | |
L1 | SR | 0.0864 | 0.1831 | 0.0414 | 0.0042 | 0.0279 | 0.3279 |
TURN | 0.1063 | 0.0677 | 0.0369 | 0.1250 | 0.1136 | 0.0629 | |
ASP | −0.0036 | −0.0012 | −0.0124 | −0.0039 | 0.0020 | −0.0195 | |
var | 8.5871 | 6.5362 | 12.9449 | 14.2074 | 13.0817 | 16.5823 | |
EN | SR | 0.0911 | 0.1790 | 0.0418 | 0.0029 | 0.0402 | 0.3181 |
TURN | 0.0256 | 0.0472 | 0.0408 | 0.1208 | 0.1181 | 0.0510 | |
ASP | −0.0257 | −0.0198 | −0.0272 | 0.0015 | 0.0011 | −0.0257 | |
var | 9.9181 | 8.7749 | 3.59e+02 | 7.3636 | 7.0004 | 34.5878 | |
BOX | SR | 0.0250 | 0.0768 | −0.1204 | −0.0495 | −0.0023 | 0.6244 |
TURN | 0.8322 | 1.7146 | 3.2709 | 0.2820 | 0.2973 | 5.1895 | |
ASP | 1.1172 | 2.7850 | 6.5137 | 0.5744 | 0.5886 | 8.4327 | |
var | 10.0132 | 8.0089 | 86.1291 | 24.3110 | 16.9741 | 21.2942 | |
SC | SR | 0.0871 | 0.1891 | 0.1202 | 0.0233 | 0.0399 | 0.2812 |
TURN | 0.0388 | 0.0313 | 0.0411 | 0.0512 | 0.0481 | 0.0247 | |
ASP | 1.38e-16 | 1.23e-16 | −1.52e-16 | 3.12e-16 | −4.19e-16 | 0 | |
var | 9.9181 | 15.0721 | 5.91e+03 | 12.1721 | 9.9999 | 17.2369 | |
SU | SR | 0.0250 | 0.1800 | −0.1270 | −0.0482 | −0.0167 | 0.4624 |
TURN | 0.8322 | 2.7947 | 3.9150 | 0.3919 | 0.3722 | 5.2429 | |
ASP | 1.1172 | 2.5580 | 5.8870 | 0.5542 | 0.5494 | 6.3456 | |
var | 11.1339 | 8.1780 | 89.8252 | 21.3370 | 19.5742 | 22.2346 | |
EW | SR | 0.0701 | 0.1790 | 0.1151 | 0.0194 | 0.0337 | 0.2922 |
TURN | 0.0208 | 0.0253 | 0.0400 | 0.0429 | 0.0381 | 0.0252 | |
ASP | 1.13e-16 | 1.13e-16 | −1.12e-16 | 4.52e-16 | −3.39e-16 | 0 | |
var | 6.9600 | 6.9782 | 2.38e+03 | 7.3676 | 7.0304 | 16.8727 | |
SCID | SR | 0.0294 | 0.1097 | −0.1259 | −0.0497 | −0.0025 | 0.6740 |
TURN | 0.4115 | 0.8589 | 0.9940 | 0.2803 | 0.2884 | 1.5393 | |
ASP | 0.6362 | 1.6735 | 2.8275 | 0.5727 | 0.5871 | 3.5605 | |
var | 6.2670 | 6.5347 | 2.6140e+03 | 7.3790 | 7.0367 | 15.6203 | |
SC1F | SR | 0.0380 | 0.0902 | −0.1253 | −0.0510 | −0.0034 | 0.6570 |
TURN | 0.3032 | 1.1648 | 0.8972 | 0.2964 | 0.2962 | 1.5858 | |
ASP | 0.4690 | 1.3556 | 2.1771 | 0.5722 | 0.5863 | 2.8086 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Jiang, Y.; Yang, Y. Robust and Sparse Portfolio: Optimization Models and Algorithms. Mathematics 2023, 11, 4925. https://doi.org/10.3390/math11244925
Zhao H, Jiang Y, Yang Y. Robust and Sparse Portfolio: Optimization Models and Algorithms. Mathematics. 2023; 11(24):4925. https://doi.org/10.3390/math11244925
Chicago/Turabian StyleZhao, Hongxin, Yilun Jiang, and Yizhou Yang. 2023. "Robust and Sparse Portfolio: Optimization Models and Algorithms" Mathematics 11, no. 24: 4925. https://doi.org/10.3390/math11244925
APA StyleZhao, H., Jiang, Y., & Yang, Y. (2023). Robust and Sparse Portfolio: Optimization Models and Algorithms. Mathematics, 11(24), 4925. https://doi.org/10.3390/math11244925