Stochastic Quasi-Geostrophic Equation with Jump Noise in Lp Spaces
Abstract
:1. Introduction
1.1. Motivation
1.2. Formulation of the Problem
1.3. Plan of the Paper
2. Preliminaries
3. Local Existence and Uniqueness
- θ has càdlàg paths -a.s.;
- , -a.s.;
- for all the following equality holds -a.s.
4. Global Solution
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Constantin, P.; Majda, A.; Tabak, E. Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar. Nonlinearity 1994, 7, 1495–1533. [Google Scholar] [CrossRef]
- Resnick, S.G. Dynamical Problems in Non-Linear Advective Partial Differential Equations. Ph.D. Thesis, The University of Chicago, Chicago, IL, USA, 1995. [Google Scholar]
- Caffarelli, L.A.; Vasseur, A. Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. 2010, 171, 1903–1930. [Google Scholar] [CrossRef]
- Dlotko, T.; Sun, C. 2D Quasi-geostrophic equation; Sub-critical and critical cases. Nonlinear Anal. 2017, 150, 38–60. [Google Scholar] [CrossRef]
- Ju, N. Existence and uniqueness of the solution to the dissipative 2D quasi-geostrophic equations in the Sobolev space. Commun. Math. Phys. 2004, 251, 365–376. [Google Scholar] [CrossRef]
- Kiselev, A.; Nazarov, F.; Volberg, A. Global well-posedness for the critical 2D dissipative quasi-geostrophic equation. Invent. Math. 2007, 167, 445–453. [Google Scholar] [CrossRef]
- Brzeźniak, Z.; Motyl, E. Fractionally Dissipative Stochastic Quasi-Geostrophic Type Equations on Rd. Siam J. Math. Anal. 2019, 51, 2306–2358. [Google Scholar] [CrossRef]
- Röckner, M.; Zhu, R.; Zhu, X. Sub and supercritical stochastic quasi-geostrophic equation. Ann. Prob. 2015, 43, 1202–1273. [Google Scholar] [CrossRef]
- Wu, J. Dissipative quasi-geostrophic equations with Lp data. Electron. Differ. Equ. 2001, 56, 1–13. [Google Scholar]
- Zhu, J.; Brzeźniak, Z.; Liu, W. Maximal inequalities and exponential estimates for stochastic convolutions driven by Lévy-type processes in Banach spaces with application to stochastic quasi-geostrophic equations. Siam J. Math. Anal. 2019, 51, 2121–2167. [Google Scholar] [CrossRef]
- Constantin, P.; Nguyen, H.Q. Local and global strong solutions for SQG in bounded domains. Phys. Nonlinear Phenom. 2018, 376, 195–203. [Google Scholar] [CrossRef]
- Constantin, P.; Ignatova, M. Critical SQG in bounded domains. Ann. Pde 2016, 2, 8. [Google Scholar] [CrossRef]
- Martinez, C.; Sanz, M. The Theory of Fractional Powers of Operators; North-Holland: Amsterdam, The Netherlands, 2001; Volume 187. [Google Scholar]
- Fujiwara, D. On the asymptotic behaviour of the Green operators for elliptic boundary problems and the pure imaginary powers of some second order operators. J. Math. Soc. Jpn. 1969, 21, 481–522. [Google Scholar] [CrossRef]
- Yagi, A. Abstract Parabolic Evolution Equations and Their Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Jerison, D.; Kenig, C.E. The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 1995, 130, 161–219. [Google Scholar] [CrossRef]
- Triebel, H. Interpolation Theory, Function Spaces, Differential Operators; North-Holland: Amsterdam, The Netherlands, 1978. [Google Scholar]
- Pazy, A. Semigroups of Linear Operators and Applications to Partial Differential Equations; Springer: Berlin/Heidelberg, Germany, 1983. [Google Scholar]
- Dlotko, T.; Kania, M.B.; Sun, C. Pseudodifferential parabolic equations; two examples. Topol. Methods Nonlinear Anal. 2014, 43, 463–492. [Google Scholar] [CrossRef]
- Komatsu, H. Fractional powers of operators. Pac. J. Math. 1966, 19, 285–346. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Wang, X.; Su, H. Stochastic Quasi-Geostrophic Equation with Jump Noise in Lp Spaces. Mathematics 2023, 11, 4608. https://doi.org/10.3390/math11224608
Zhu J, Wang X, Su H. Stochastic Quasi-Geostrophic Equation with Jump Noise in Lp Spaces. Mathematics. 2023; 11(22):4608. https://doi.org/10.3390/math11224608
Chicago/Turabian StyleZhu, Jiahui, Xinyun Wang, and Heling Su. 2023. "Stochastic Quasi-Geostrophic Equation with Jump Noise in Lp Spaces" Mathematics 11, no. 22: 4608. https://doi.org/10.3390/math11224608
APA StyleZhu, J., Wang, X., & Su, H. (2023). Stochastic Quasi-Geostrophic Equation with Jump Noise in Lp Spaces. Mathematics, 11(22), 4608. https://doi.org/10.3390/math11224608