Predefined-Time Fractional-Order Tracking Control for UAVs with Perturbation
Abstract
:1. Introduction
1.1. Motivations and Background
1.2. Related Works
1.3. Contributions
- The proposed method completes the stabilization and optimization procedures within a predefined time.
- The predefined-time fractional-order sliding mode control exhibits minimal overshoot, the smallest error, and faster variable convergence.
- Utilizing the proposed control, the stability of the quadrotor system within a predefined time is assessed through the application of the Lyapunov function. Simulations are employed to validate the efficacy of the suggested control for the quadrotor system.
- The simulation results show that, in comparison to current flight controllers, the suggested controller enables the quadrotor to achieve the intended flight trajectory with high accuracy.
2. Preliminary Knowledge
2.1. Predefined-Time Stability
2.2. Fractional-Order Calculus
3. Problem Formulation
4. Predefined-Time Fractional-Order Controller Design
4.1. Outer-Loop Control Design
4.2. Altitude Stability Analysis for a Quadrotor
4.3. Horizontal and Vertical Control Design
4.4. Inner-Loop Control Design
4.5. Attitude Stability Analysis for a Quadrotor
4.6. Stability Global Analysis
5. Simulations Results for Quadrotor
5.1. Scenario 1
5.2. Scenario 2
5.3. Scenario 3
5.4. Quantitative Analysis of the Controllers
- Integral square error (ISE): It is given by
- Integral of the square value of control signal (ISV):
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hassanalian, M.; Abdelkefi, A. Classifications, Applications, and Design Challenges of Drones: A Review. Prog. Aerosp. Sci. 2017, 91, 99–131. [Google Scholar] [CrossRef]
- Watts, A.C.; Ambrosia, V.G.; Hinkley, E. Unmanned Aircraft Systems in Remote Sensing and Scientific Research: Classification and Considerations of Use. Remote Sens. 2012, 4, 1671–1692. [Google Scholar] [CrossRef]
- de Zarzà, I.; de Curtò, J.; Cano, J.C.; Calafate, C.T. Drone-Based Decentralized Truck Platooning with UWB Sensing and Control. Mathematics 2023, 11, 4627. [Google Scholar] [CrossRef]
- Eskandaripour, H.; Boldsaikhan, E. Last-Mile Drone Delivery: Past, Present, and Future. Drones 2023, 7, 77. [Google Scholar] [CrossRef]
- Gohari, A.; Ahmad, A.; Rahim, R.A.; Supa’at, A.S.M.; Razak, S.A.; Gismalla, M.S.M. Involvement of Surveillance Drones in Smart Cities: A Systematic Review. IEEE Access 2022, 10, 56611–56628. [Google Scholar] [CrossRef]
- Mishra, B.; Garg, D.; Narang, P.; Mishra, V.K. Drone-surveillance for Search and Rescue in Natural Disaster. Comput. Commun. 2020, 156, 1–10. [Google Scholar] [CrossRef]
- Labbadi, M.; Cherkaoui, M. Robust Adaptive Nonsingular Fast Terminal Sliding-mode Tracking Control for an Uncertain Quadrotor UAV Subjected to Disturbances. ISA Trans. 2020, 99, 290–304. [Google Scholar] [CrossRef] [PubMed]
- Mechali, O.; Xu, L.; Xie, X.; Iqbal, J. Theory and Practice for Autonomous Formation Flight of Quadrotors via Distributed Robust Sliding Mode Control Protocol with Fixed-time Stability Guarantee. Control Eng. Pract. 2022, 123, 105150. [Google Scholar] [CrossRef]
- Labbadi, M.; Cherkaoui, M. Robust Adaptive Backstepping Fast Terminal Sliding Mode Controller for Uncertain Quadrotor UAV. Aerosp. Sci. Technol. 2019, 93, 105306. [Google Scholar] [CrossRef]
- Comert, C.; Kasnakoglu, C. Comparing and Developing PID and Sliding Mode Controllers for Quadrotor. Int. J. Mech. Eng. Robot. Res. 2017, 6, 194–199. [Google Scholar] [CrossRef]
- Elyaalaoui, K.; Labbadi, M.; Boubaker, S.; Kamel, S.; Alsubaei, F.S. On Novel Fractional-Order Trajectory Tracking Control of Quadrotors: A Predefined-Time Guarantee Performance Approach. Mathematics 2023, 11, 3582. [Google Scholar] [CrossRef]
- Raffo, G.V.; Ortega, M.G.; Rubio, F. An Integral Predictive/nonlinear H∞ Control Structure for a Quadrotor Helicopter. Automatica 2010, 46, 29–39. [Google Scholar] [CrossRef]
- Zheng, E.-H.; Xiong, J.-J.; Luo, J.-L. Second Order Sliding Mode Control for a Quadrotor UAV. ISA Trans. 2014, 53, 1350–1356. [Google Scholar] [CrossRef] [PubMed]
- Tian, B.; Tian, B.; Lu, H.; Zuo, Z.; Zong, Q.; Zhang, Y. Multivariable Finite-time Output Feedback Trajectory Tracking Control of Quadrotor Helicopters. Int. Robust Nonlinear Control 2018, 28, 281–295. [Google Scholar] [CrossRef]
- Xie, W.; Cabecinhas, D.; Cunha, R.; Silvestre, C. Adaptive Backstepping Control of a Quadcopter with Uncertain Vehicle Mass, Moment of Inertia, and Disturbances. IEEE Trans. Ind. Electron. 2022, 69, 549–559. [Google Scholar] [CrossRef]
- Guo, Y.; Ma, B. Global Sliding Mode with Fractional Operators and Application to Control Robot Manipulators. Int. J. Control 2019, 92, 1497–1510. [Google Scholar] [CrossRef]
- Ni, J.; Liu, L.; Liu, C.; Hu, X.; Li, S. Fast Fixed-time Nonsingular Terminal Sliding Mode Control and Its Application to Chaos Suppression in Power System. Circuits Syst. II Exp. Briefs 2017, 64, 151–155. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, J.; La Scala, M. A Novel Distributed-decentralized Fixed-time Optimal Frequency and Excitation Control Framework in a Nonlinear Network-preserving Power System. IEEE Trans. Power Syst. 2021, 36, 1285–1297. [Google Scholar] [CrossRef]
- Zeng, T.; Ren, X.; Zhang, Y. Fixed-time Sliding Mode Control and High-gain Nonlinearity Compensation for Dual-motor Driving System. IEEE Trans. Ind. Inform. 2020, 16, 4090–4098. [Google Scholar] [CrossRef]
- Muñoz-Vázquez, A.J.; Sanchez-Torres, J.D.; Jiménez-Rodríguez, E.; Loukianov, A.G. Predefined-time Robust Stabilization of Robotic Manipulators. IEEE/ASME Trans. Mechatron. 2019, 24, 2709–2722. [Google Scholar] [CrossRef]
- Muñoz-Vázquez, A.J.; Fernández-Anaya, G.; Sanchez-Torres, J.D.; Meléndez-Vázquez, F. Predefined-time Control of Distributed-order Systems. Nonlinear Dyn. 2021, 103, 2689–2700. [Google Scholar] [CrossRef]
- Ni, J.; Liu, L.; Tang, Y.; Liu, C. Predefined-time Consensus Tracking of Second-order Multiagent Systems. IEEE Trans. Syst. 2021, 51, 2550–2560. [Google Scholar] [CrossRef]
- Benaddy, A.; Labbadi, M.; Elyaalaoui, K.; Bouzi, M. Fixed-Time Fractional-Order Sliding Mode Control for UAVs under External Disturbances. Fractal Fract. 2023, 7, 775. [Google Scholar] [CrossRef]
- Muñoz-Vázquez, A.J.; Parra-Vega, V.; Sánchez-Orta, A.; Romero-Galván, G. Fractional PD IλD Error Manifolds for Robust Tracking Control of Robotic Manipulators. J. Dyn. Syst. Meas. Control 2019, 141, 031006-6. [Google Scholar] [CrossRef]
- Wang, N.; Deng, Q.; Xie, G.; Pan, X. Hybrid Finite-time Trajectory Tracking Control of a Quadrotor. ISA Trans. 2019, 90, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Wang, J.; Xiong, L.; Liu, J.; Li, P.; Wang, Z. Distributed Predefined-Time Fractional-Order Sliding Mode Control for Power System With Prescribed Tracking Performance. IEEE Trans. Power Syst. 2022, 37, 2233–2246. [Google Scholar] [CrossRef]
- Bhat, S.P.; Bernstein, D.S. Finite-time Stability of Continuous Autonomous Systems. SIAM J. Control Optim. 2000, 38, 1430–1443. [Google Scholar] [CrossRef]
- Polyakov, A. Nonlinear Feedback Design for Fixed-time Stabilization of Linear Control Systems. IEEE Trans. Autom. Control 2012, 57, 2106–2110. [Google Scholar] [CrossRef]
- Fraguela, L.; Angulo, M.T.; Moreno, J.A.; Fridman, L. Design of a prescribed convergence time uniform Robust Exact Observer in the presence of measurement noise. In Proceedings of the IEEE 51st IEEE Conference on Decision and Control, Maui, HI, USA, 10–13 December 2012. [Google Scholar] [CrossRef]
- Sanchez-Torres, J.D.; Sanchez-Torres, J.D.; Gómez-Gutiérrez, D.; López, E.; Loukianov, A.G. A Class of Predefined-time Stable Dynamical Systems. IMA J. Math. Control Inf. 2018, 35, i1–i29. [Google Scholar] [CrossRef]
- Pourmahmood Aghababa, M. A Novel Terminal Sliding Mode Controller for a Class of Non-autonomous Fractional-order Systems. Nonlinear Dyn. 2013, 73, 679–688. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA; Available online: https://shop.elsevier.com/books/fractional-differential-equations/podlubny/978-0-12-558840-9 (accessed on 1 January 1999).
- Benaddy, A.; Labbadi, M.; Bouzi, M. Adaptive Nonlinear Controller for the Trajectory Tracking of the Quadrotor with Uncertainties. In Proceedings of the 2020 2nd Global Power, Energy and Communication Conference (GPECOM), Izmir, Turkey, 20–23 October 2020. [Google Scholar] [CrossRef]
- Liang, C.-D.; Ge, M.-F.; Ge, M.-F.; Liu, Z.-W.; Ling, G.; Liu, F.; Liu, F. Predefined-time Formation Tracking Control of Networked Marine Surface Vehicles. Control Eng. Pract. 2021, 107, 104682. [Google Scholar] [CrossRef]
- Chen, F.; Jiang, R.; Zhang, K.; Jiang, B.; Tao, G. Robust Backstepping Sliding-mode Control and Observer-based Fault Estimation for a Quadrotor UAV. IEEE Trans. Ind. Electron. 2016, 63, 5044–5056. [Google Scholar] [CrossRef]
Symbol | Value | Symbol | Value |
---|---|---|---|
m () | (m) | ||
g (s m) | (m) | ||
l () | (m) | ||
() | 2.03 × 10 | (rad) | |
() | (rad) | ||
() | (rad) | ||
() | ♭ (s) |
Parameter | Value | Parameter | Value |
---|---|---|---|
0.8 | 2 | ||
0.5 | 1 | ||
10.51 | 5 | ||
20 | 4 | ||
0.2 | 0.9 | ||
0.4 | 0.9 |
ISE of the Scenario 1 | |||
---|---|---|---|
Variable | Proposed Method | Method [5] | Method [6] |
0.001698 | 0.003314 | 0.03161 | |
0.004448 | 0.0105 | 0.03038 | |
0.009245 | 0.2262 | 0.01622 | |
0.2036 | 0.3646 | 0.4262 | |
ISE of the Scenario 2 | |||
Variable | Proposed Method | Method [5] | Method [6] |
0.000202 | 0.000948 | 0.001744 | |
0.006334 | 0.003576 | 0.007545 | |
0.009247 | 0.022640 | 0.016220 | |
4.26 × | 3.76 × | 0.000410 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benaddy, A.; Labbadi, M.; Boubaker, S.; Alsubaei, F.S.; Bouzi, M. Predefined-Time Fractional-Order Tracking Control for UAVs with Perturbation. Mathematics 2023, 11, 4886. https://doi.org/10.3390/math11244886
Benaddy A, Labbadi M, Boubaker S, Alsubaei FS, Bouzi M. Predefined-Time Fractional-Order Tracking Control for UAVs with Perturbation. Mathematics. 2023; 11(24):4886. https://doi.org/10.3390/math11244886
Chicago/Turabian StyleBenaddy, Abdellah, Moussa Labbadi, Sahbi Boubaker, Faisal S. Alsubaei, and Mostafa Bouzi. 2023. "Predefined-Time Fractional-Order Tracking Control for UAVs with Perturbation" Mathematics 11, no. 24: 4886. https://doi.org/10.3390/math11244886
APA StyleBenaddy, A., Labbadi, M., Boubaker, S., Alsubaei, F. S., & Bouzi, M. (2023). Predefined-Time Fractional-Order Tracking Control for UAVs with Perturbation. Mathematics, 11(24), 4886. https://doi.org/10.3390/math11244886