Defect Detection Model Using CNN and Image Augmentation for Seat Foaming Process
Abstract
:1. Introduction
2. Data Collection and ANN
2.1. Data Collection and Processing Method
2.2. ANN
3. Proposed CNN Architecture
3.1. Data Creation and Augmentation for CNN
3.2. Two-Dimensional CNN Model
3.3. Optimization of Hyperparameters
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Soualhi, M.; Nguyen, K.T.P.; Medjaher, K. Pattern recognition method of fault diagnostics based on a new health indicator for smart manufacturing. Mech. Syst. Signal Process. 2020, 142, 106680. [Google Scholar] [CrossRef]
- Booyse, W.; Wilke, D.N.; Heyns, S. Deep digital twins for detection, diagnostics and prognostics. Mech. Syst. Signal Process. 2020, 140, 106612. [Google Scholar] [CrossRef]
- Jang, I.; Bae, G.; Kim, H. Metal forming defect detection method based on recurrence quantification analysis of time-series load signal measured by real-time monitoring system with bolt-type piezoelectric sensor. Mech. Syst. Signal Process. 2022, 180, 109457. [Google Scholar] [CrossRef]
- Chen, Y.; Rao, M.; Feng, K.; Zuo, M.J. Physics-Informed LSTM Hyperparameters Selection for Gearbox Fault Detection. Mech. Syst. Signal Process. 2022, 171, 108907. [Google Scholar] [CrossRef]
- Han, T.; Xie, W.; Pei, Z. Semi-Supervised Adversarial Discriminative Learning Approach for Intelligent Fault Diagnosis of Wind Turbine. Inf. Sci. 2023, 648, 119496. [Google Scholar] [CrossRef]
- Chen, Y.; Rao, M.; Feng, K.; Niu, G. Modified Varying Index Coefficient Autoregression Model for Representation of the Nonstationary Vibration from a Planetary Gearbox. IEEE Trans. Instrum. Meas. 2023, 72, 1–12. [Google Scholar] [CrossRef]
- Yao, J.; Han, T. Data-Driven Lithium-Ion Batteries Capacity Estimation Based on Deep Transfer Learning Using Partial Segment of Charging/Discharging Data. Energy 2023, 271, 127033. [Google Scholar] [CrossRef]
- Im, S.J.; Oh, J.S.; Kim, G.-W. Simultaneous Estimation of Unknown Road Roughness Input and Tire Normal Forces Based on a Long Short-Term Memory Model. IEEE Access 2022, 10, 16655–16669. [Google Scholar] [CrossRef]
- Chien, J.C.; Wu, M.T.; Lee, J.D. Inspection and classification of semiconductor wafer surface defects using CNN deep learning networks. Appl. Sci. 2020, 10, 5340. [Google Scholar] [CrossRef]
- Sahu, C.K.; Young, C.; Rai, R. Artificial intelligence (AI) in augmented reality (AR)-assisted manufacturing applications: A review. Int. J. Prod. Res. 2021, 59, 4903–4959. [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [PubMed]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Glaeser, A.; Selvaraj, V.; Lee, S.; Hwang, Y.; Lee, K.; Lee, N.; Lee, S.; Min, S.; Min, S. Applications of deep learning for fault detection in industrial cold forging. Int. J. Prod. Res. 2021, 59, 4826–4835. [Google Scholar] [CrossRef]
- Nakazawa, T.; Kulkarni, D.V. Wafer map defect pattern classification and image retrieval using convolutional neural network. IEEE Trans. Semicond. Manuf. 2018, 31, 309–314. [Google Scholar] [CrossRef]
- Saqlain, M.; Abbas, Q.; Lee, J.Y. A deep convolutional neural network for wafer defect identification on an imbalanced dataset in semiconductor manufacturing processes. IEEE Trans. Semicond. Manuf. 2020, 33, 436–444. [Google Scholar] [CrossRef]
- Liu, J.; Shao, Y. Overview of dynamic modelling and analysis of rolling element bearings with localized and distributed faults. Nonlinear Dyn. 2018, 93, 1765–1798. [Google Scholar] [CrossRef]
- Wang, L.-H.; Zhao, X.-P.; Wu, J.-X.; Xie, Y.-Y.; Zhang, Y.-H. Motor fault diagnosis based on short-time Fourier transform and convolutional neural network. Chin. J. Mech. Eng. 2017, 30, 1357–1368. [Google Scholar] [CrossRef]
- Chen, K.; Zhou, X.-C.; Fang, J.-Q.; Zheng, P.-F.; Wang, J. Fault feature extraction and diagnosis of gearbox based on EEMD and deep briefs network. Int. J. Rotating Mach. 2017, 2017, 9602650. [Google Scholar] [CrossRef]
- Guo, S.; Yang, T.; Gao, W.; Zhang, C. A novel fault diagnosis method for rotating machinery based on a convolutional neural network. Sensors 2018, 18, 1429. [Google Scholar] [CrossRef]
- Sun, W.F.; Yao, B.; Zeng, N.; Chen, B.; He, Y.; Cao, X.; He, W. An intelligent gear fault diagnosis methodology using a complex wavelet enhanced convolutional neural network. Materials 2017, 10, 790. [Google Scholar] [CrossRef]
- Zhao, M.; Kang, M.; Tang, B.; Pecht, M. Deep residual networks with dynamically weighted wavelet coefficients for fault diagnosis of planetary gearboxes. IEEE Trans. Ind. Electron. 2018, 65, 4290–4300. [Google Scholar] [CrossRef]
- Sezer, O.B.; Ozbayoglu, A.M. Algorithmic financial trading with deep convolutional neural networks: Time series to image conversion approach. Appl. Soft Comput. 2018, 70, 525–538. [Google Scholar] [CrossRef]
- Lee, E.; Nam, M.; Lee, H. Tab2vox: CNN-based multivariate multilevel demand forecasting framework by tabular-to-voxel image conversion. Sustainability 2022, 14, 11745. [Google Scholar] [CrossRef]
- Choi, N.K. Defect Prediction Model of Automobile Interior Parts in Manufacturing Process. Master Thesis, Kongju National University, Cheonan, Choongnam, Republic of Korea, 2023. [Google Scholar]
- Adnan, R.; Ruslan, F.A.; Samad, A.M.; Zain, Z.M. New Artificial Neural Network and Extended Kalman Filter Hybrid Model of Flood Prediction System. In Proceedings of the 2013 IEEE 9th International Colloquium on Signal Processing and its Applications, Kuala Lumpur, Malaysia, 8–10 March 2013; pp. 252–257. [Google Scholar] [CrossRef]
- Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 1–48. [Google Scholar] [CrossRef]
- DeVries, T.; Taylor, G.W. Improved Regularization of Convolutional Neural Networks with Cutout. arXiv 2017, arXiv:1708.04552. [Google Scholar]
- Restrepo Rodríguez, A.O.; Casas Mateus, D.E.; Gaona García, P.A.; Montenegro Marín, C.E.; González Crespo, R. Hyperparameter optimization for image recognition over an ar-sandbox based on convolutional neural networks applying a previous phase of segmentation by color–space. Symmetry 2018, 10, 743. [Google Scholar] [CrossRef]
- Sokolova, M.; Japkowicz, N.; Szpakowicz, S. Beyond Accuracy, F-Score and ROC: A Family of Discriminant Measures for Performance Evaluation; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1015–1021. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
Isocyanate | Polyol | Label | |||||
---|---|---|---|---|---|---|---|
Flow | Pressure | Temperature | Flow | Pressure | Temperature | ||
Original Dataset | 42.6 | 92.2 | 24.4 | 133.3 | 109.1 | 26.4 | Fine |
42.1 | 93.4 | 24.4 | 133.3 | 109.7 | 26.3 | Fine | |
41.7 | 105 | 24.4 | 134.4 | 109.6 | 26.3 | Fine | |
42.1 | 100.9 | 24.8 | 135.4 | 109.6 | 26.3 | Fine | |
42.1 | 94.9 | 24.3 | 133.3 | 108.7 | 26.4 | Defect | |
41.2 | 90.7 | 24. | 133.3 | 107.5 | 26.9 | Defect | |
41.2 | 109.5 | 24.9 | 133.3 | 108.6 | 26.5 | Defect | |
41.7 | 90 | 24.7 | 134.4 | 109.4 | 26.3 | Defect | |
Normalized Dataset | 0.616667 | 0.537258 | 0.493846 | 0.741975 | 0.338596 | 0.841935 | Fine |
0.602778 | 0.55413 | 0.493846 | 0.741975 | 0.366667 | 0.835484 | Fine | |
0.591667 | 0.717223 | 0.493846 | 0.796296 | 0.361988 | 0.835484 | Fine | |
0.602778 | 0.659578 | 0.543077 | 0.845679 | 0.361988 | 0.835484 | Fine | |
0.602778 | 057522 | 0.481538 | 0.741975 | 0.319883 | 0.841935 | Defect | |
0.577778 | 0.516169 | 0.506154 | 0.796296 | 0.319883 | 0.848387 | Defect | |
0.577778 | 0.780492 | 0.555385 | 0.741975 | 0.315205 | 0.848387 | Defect | |
0.591667 | 0.506327 | 0.530769 | 0.796296 | 0.35632 | 0.835484 | Defect |
Layer | Feature Map | Learnables | Activation |
---|---|---|---|
Input Layer | 6 | - | |
Fully Connected Layer | 100 | Weight 100 × 6, Bias 100 × 1 | |
Batch Normalization Layer | 100 | Offset 100 × 1, Scale 100 × 1 | ReLU |
Fully Connected Layer | 50 | Weight 50 × 100, Bias 50 × 1 | |
Batch Normalization Layer | 50 | Offset 50 × 1, Scale 50 × 1 | ReLU |
Fully Connected Layer | 10 | Weight 10 × 50, Bias 10 × 1 | |
Batch Normalization Layer | 10 | Offset 10 × 1, Scale 10 × 1 | ReLU |
Dropout Layer | 10 | - | |
Fully Connected Layer | 2 | Weight 2 × 10, Bias 2 × 1 | |
Classification Layer | 2 | - | SoftMax |
Layer | Activation | Learnables | Activation |
---|---|---|---|
Image Input Layer | 224 × 224 × 3 | - | |
Convolution Layer | 224 × 224 × 16 | Weight 3 × 3 × 3 × 16, Bias 1 × 1 × 16 | |
Batch Normalization Layer | 224 × 224 × 16 | Offset 1 × 1 × 16, Scale 1 × 1 × 16 | Sigmoid |
Max Pooling Layer | 112 × 112 × 16 | - | |
Convolution Layer | 112 × 112 × 16 | Weight 3 × 3 × 16 × 16, Bias 1 × 1 × 16 | |
Convolution Layer | 112 × 112 × 32 | Weight 3 × 3 × 16 × 32, Bias 1 × 1 × 32 | |
Batch Normalization Layer | 112 × 112 × 32 | Offset 1 × 1 × 32, Scale 1 × 1 × 32 | Sigmoid |
Max Pooling Layer | 56 × 56 × 32 | - | |
Convolution Layer | 56 × 56 × 32 | Weight 3 × 3 × 32 × 32, Bias 1 × 1 × 32 | |
Convolution Layer | 56 × 56 × 64 | Weight 3 × 3 × 32 × 64, Bias 1 × 1 × 64 | |
Batch Normalization Layer | 56 × 56 × 64 | Offset 1 × 1 × 64, Scale 1 × 1 × 64 | Sigmoid |
Max Pooling Layer | 28 × 28 × 64 | - | |
Convolution Layer | 28 × 28 × 64 | Weight 3 × 3 × 64 × 64, Bias 1 × 1 × 64 | |
Convolution Layer | 28 × 28 × 128 | Weight 3 × 3 × 64 × 128, Bias 1 × 1 × 128 | |
Batch Normalization Layer | 28 × 28 × 128 | Offset 1 × 1 × 128, Scale 1 × 1 × 128 | Sigmoid |
Max Pooling Layer | 14 × 14 × 128 | - | |
Convolution Layer | 14 × 14 × 128 | Weight 3 × 3 × 128 × 128, Bias 1 × 1 × 128 | |
Dropout | 14 × 14 × 128 | - | |
Fully Connected Layer | 1 × 1 × 2 | - | |
Classification Layer | 1 × 1 × 2 | - | SoftMax |
Hyperparameter | Range | Step |
---|---|---|
Initial Learning Rate | 0.001~0.01 | 0.05 |
Max Epoch | 10~50 | 10 |
Minibatch Size | 10~300 | 50 |
Dropout Rate | 0~0.3 | 0.1 |
Algorithm | Dataset | Optimization Hyperparameter | |||
---|---|---|---|---|---|
Minibatch | Max Epoch | Dropout | Learning Rate | ||
ANN | k-65 SMOTE | 100 | 50 | 0 | 0.005 |
k-98 SMOTE | 300 | 50 | 0 | 0.001 | |
k-130 SMOTE | 150 | 50 | 0 | 0.005 | |
CNN | 2× Augmentation | 100 | 50 | 0.2 | 0.001 |
5× Augmentation | 150 | 30 | 0.1 | 0.001 | |
10× Augmentation | 100 | 20 | 0.3 | 0.001 |
Algorithm | Dataset | Performance Index | ||||
---|---|---|---|---|---|---|
Accuracy | Precision | Recall | F1 Score | Fallout | ||
ANN | k-65 SMOTE | 0.8304 | 0.7606 | 0.9643 | 0.8540 | 0.3036 |
k-98 SMOTE | 0.8393 | 0.7639 | 0.9821 | 0.8594 | 0.3036 | |
k-130 SMOTE | 0.8482 | 0.7746 | 0.9821 | 0.8661 | 0.2857 | |
CNN | 2× Augmentation | 0.9554 | 0.9474 | 0.9643 | 0.9558 | 0.0526 |
5× Augmentation | 0.9643 | 0.943 | 0.9643 | 0.9643 | 0.0357 | |
10× Augmentation | 0.9732 | 0.9649 | 0.9821 | 0.9735 | 0.0357 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, N.-H.; Sohn, J.W.; Oh, J.-S. Defect Detection Model Using CNN and Image Augmentation for Seat Foaming Process. Mathematics 2023, 11, 4894. https://doi.org/10.3390/math11244894
Choi N-H, Sohn JW, Oh J-S. Defect Detection Model Using CNN and Image Augmentation for Seat Foaming Process. Mathematics. 2023; 11(24):4894. https://doi.org/10.3390/math11244894
Chicago/Turabian StyleChoi, Nak-Hun, Jung Woo Sohn, and Jong-Seok Oh. 2023. "Defect Detection Model Using CNN and Image Augmentation for Seat Foaming Process" Mathematics 11, no. 24: 4894. https://doi.org/10.3390/math11244894
APA StyleChoi, N.-H., Sohn, J. W., & Oh, J.-S. (2023). Defect Detection Model Using CNN and Image Augmentation for Seat Foaming Process. Mathematics, 11(24), 4894. https://doi.org/10.3390/math11244894